Cargando…
Deep structured residual encoder-decoder network with a novel loss function for nuclei segmentation of kidney and breast histopathology images
To improve the process of diagnosis and treatment of cancer disease, automatic segmentation of haematoxylin and eosin (H & E) stained cell nuclei from histopathology images is the first step in digital pathology. The proposed deep structured residual encoder-decoder network (DSREDN) focuses on t...
Autores principales: | Chanchal, Amit Kumar, Lal, Shyam, Kini, Jyoti |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8809220/ https://www.ncbi.nlm.nih.gov/pubmed/35125928 http://dx.doi.org/10.1007/s11042-021-11873-1 |
Ejemplares similares
-
Short-Term Outcomes of Lung Transplantation for COVID-19 ARDS: A Single Center Experience
por: Nguyen, A., et al.
Publicado: (2022) -
A novel dataset and efficient deep learning framework for automated grading of renal cell carcinoma from kidney histopathology images
por: Chanchal, Amit Kumar, et al.
Publicado: (2023) -
A contour property based approach to segment nuclei in cervical cytology images
por: Hoque, Iram Tazim, et al.
Publicado: (2021) -
Histopathologic Differences Between Adrenocorticotropic Hormone–Dependent and Adrenocorticotropic Hormone–Independent Adrenal Hyperplasia Causing Cushing Syndrome
por: Pishdad, Reza, et al.
Publicado: (2022) -
Impacts of heifer postweaning residual feed intake classification on reproductive and performance measurements of first-, second-, and third-parity Angus beef females
por: Parsons, Cory T, et al.
Publicado: (2021)