Cargando…
The Anticancer Agent 3,3'-Diindolylmethane Inhibits Multispecies Biofilm Formation by Acne-Causing Bacteria and Candida albicans
The Gram-positive anaerobic bacterium Cutibacterium acnes is a major inhabitant of human skin and has been implicated in acne vulgaris formation and in the formation of multispecies biofilms with other skin-inhabiting organisms like Staphylococcus aureus and Candida albicans. Indoles are widespread...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8809333/ https://www.ncbi.nlm.nih.gov/pubmed/35107361 http://dx.doi.org/10.1128/spectrum.02056-21 |
_version_ | 1784643990070493184 |
---|---|
author | Kim, Yong-Guy Lee, Jin-Hyung Park, Sunyoung Lee, Jintae |
author_facet | Kim, Yong-Guy Lee, Jin-Hyung Park, Sunyoung Lee, Jintae |
author_sort | Kim, Yong-Guy |
collection | PubMed |
description | The Gram-positive anaerobic bacterium Cutibacterium acnes is a major inhabitant of human skin and has been implicated in acne vulgaris formation and in the formation of multispecies biofilms with other skin-inhabiting organisms like Staphylococcus aureus and Candida albicans. Indoles are widespread in nature (even in human skin) and function as important signaling molecules in diverse prokaryotes and eukaryotes. In the present study, we investigated the antibacterial and antibiofilm activities of 20 indoles against C. acnes. Of the indoles tested, indole-3-carbinol at 0.1 mM significantly inhibited biofilm formation by C. acnes without affecting planktonic cell growth, and the anticancer drug 3,3′-diindolylmethane (DIM) at 0.1 mM (32 μg/mL) also significantly inhibited planktonic cell growth and biofilm formation by C. acnes, whereas the other indoles and indole itself were less effective. Also, DIM at 0.1 mM successfully inhibited multispecies biofilm formation by C. acnes, S. aureus, and C. albicans. Transcriptional analyses showed that DIM inhibited the expressions of several biofilm-related genes in C. acnes, and at 0.05 mM, DIM inhibited hyphal formation and cell aggregation by C. albicans. These results suggest that DIM and other indoles inhibit biofilm formation by C. acnes and have potential use for treating C. acnes associated diseases. IMPORTANCE Since indoles are widespread in nature (even in human skin), we hypothesized that indole and its derivatives might control biofilm formation of acne-causing bacteria (Cutibacterium acnes and Staphylococcus aureus) and fungal Candida albicans. The present study reports for the first time the antibiofilm and antimicrobial activities of several indoles on C. acnes. Of the indoles tested, two anticancer agents, indole-3-carbinol and 3,3′-diindolylmethane found in cruciferous vegetables, significantly inhibited biofilm formation by C. acnes. Furthermore, the most active 3,3′-diindolylmethane successfully inhibited multispecies biofilm formation by C. acnes, S. aureus, and C. albicans. Transcriptional analyses showed that 3,3′-diindolylmethane inhibited the expressions of several biofilm-related genes including lipase, hyaluronate lyase, and virulence-related genes in C. acnes, and 3,3′-diindolylmethane inhibited hyphal formation and cell aggregation by C. albicans. Our findings show that 3,3′-diindolylmethane offers a potential means of controlling acne vulgaris and multispecies biofilm-associated infections due to its antibiofilm and antibiotic properties. |
format | Online Article Text |
id | pubmed-8809333 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | American Society for Microbiology |
record_format | MEDLINE/PubMed |
spelling | pubmed-88093332022-02-09 The Anticancer Agent 3,3'-Diindolylmethane Inhibits Multispecies Biofilm Formation by Acne-Causing Bacteria and Candida albicans Kim, Yong-Guy Lee, Jin-Hyung Park, Sunyoung Lee, Jintae Microbiol Spectr Research Article The Gram-positive anaerobic bacterium Cutibacterium acnes is a major inhabitant of human skin and has been implicated in acne vulgaris formation and in the formation of multispecies biofilms with other skin-inhabiting organisms like Staphylococcus aureus and Candida albicans. Indoles are widespread in nature (even in human skin) and function as important signaling molecules in diverse prokaryotes and eukaryotes. In the present study, we investigated the antibacterial and antibiofilm activities of 20 indoles against C. acnes. Of the indoles tested, indole-3-carbinol at 0.1 mM significantly inhibited biofilm formation by C. acnes without affecting planktonic cell growth, and the anticancer drug 3,3′-diindolylmethane (DIM) at 0.1 mM (32 μg/mL) also significantly inhibited planktonic cell growth and biofilm formation by C. acnes, whereas the other indoles and indole itself were less effective. Also, DIM at 0.1 mM successfully inhibited multispecies biofilm formation by C. acnes, S. aureus, and C. albicans. Transcriptional analyses showed that DIM inhibited the expressions of several biofilm-related genes in C. acnes, and at 0.05 mM, DIM inhibited hyphal formation and cell aggregation by C. albicans. These results suggest that DIM and other indoles inhibit biofilm formation by C. acnes and have potential use for treating C. acnes associated diseases. IMPORTANCE Since indoles are widespread in nature (even in human skin), we hypothesized that indole and its derivatives might control biofilm formation of acne-causing bacteria (Cutibacterium acnes and Staphylococcus aureus) and fungal Candida albicans. The present study reports for the first time the antibiofilm and antimicrobial activities of several indoles on C. acnes. Of the indoles tested, two anticancer agents, indole-3-carbinol and 3,3′-diindolylmethane found in cruciferous vegetables, significantly inhibited biofilm formation by C. acnes. Furthermore, the most active 3,3′-diindolylmethane successfully inhibited multispecies biofilm formation by C. acnes, S. aureus, and C. albicans. Transcriptional analyses showed that 3,3′-diindolylmethane inhibited the expressions of several biofilm-related genes including lipase, hyaluronate lyase, and virulence-related genes in C. acnes, and 3,3′-diindolylmethane inhibited hyphal formation and cell aggregation by C. albicans. Our findings show that 3,3′-diindolylmethane offers a potential means of controlling acne vulgaris and multispecies biofilm-associated infections due to its antibiofilm and antibiotic properties. American Society for Microbiology 2022-02-02 /pmc/articles/PMC8809333/ /pubmed/35107361 http://dx.doi.org/10.1128/spectrum.02056-21 Text en Copyright © 2022 Kim et al. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Research Article Kim, Yong-Guy Lee, Jin-Hyung Park, Sunyoung Lee, Jintae The Anticancer Agent 3,3'-Diindolylmethane Inhibits Multispecies Biofilm Formation by Acne-Causing Bacteria and Candida albicans |
title | The Anticancer Agent 3,3'-Diindolylmethane Inhibits Multispecies Biofilm Formation by Acne-Causing Bacteria and Candida albicans |
title_full | The Anticancer Agent 3,3'-Diindolylmethane Inhibits Multispecies Biofilm Formation by Acne-Causing Bacteria and Candida albicans |
title_fullStr | The Anticancer Agent 3,3'-Diindolylmethane Inhibits Multispecies Biofilm Formation by Acne-Causing Bacteria and Candida albicans |
title_full_unstemmed | The Anticancer Agent 3,3'-Diindolylmethane Inhibits Multispecies Biofilm Formation by Acne-Causing Bacteria and Candida albicans |
title_short | The Anticancer Agent 3,3'-Diindolylmethane Inhibits Multispecies Biofilm Formation by Acne-Causing Bacteria and Candida albicans |
title_sort | anticancer agent 3,3'-diindolylmethane inhibits multispecies biofilm formation by acne-causing bacteria and candida albicans |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8809333/ https://www.ncbi.nlm.nih.gov/pubmed/35107361 http://dx.doi.org/10.1128/spectrum.02056-21 |
work_keys_str_mv | AT kimyongguy theanticanceragent33diindolylmethaneinhibitsmultispeciesbiofilmformationbyacnecausingbacteriaandcandidaalbicans AT leejinhyung theanticanceragent33diindolylmethaneinhibitsmultispeciesbiofilmformationbyacnecausingbacteriaandcandidaalbicans AT parksunyoung theanticanceragent33diindolylmethaneinhibitsmultispeciesbiofilmformationbyacnecausingbacteriaandcandidaalbicans AT leejintae theanticanceragent33diindolylmethaneinhibitsmultispeciesbiofilmformationbyacnecausingbacteriaandcandidaalbicans AT kimyongguy anticanceragent33diindolylmethaneinhibitsmultispeciesbiofilmformationbyacnecausingbacteriaandcandidaalbicans AT leejinhyung anticanceragent33diindolylmethaneinhibitsmultispeciesbiofilmformationbyacnecausingbacteriaandcandidaalbicans AT parksunyoung anticanceragent33diindolylmethaneinhibitsmultispeciesbiofilmformationbyacnecausingbacteriaandcandidaalbicans AT leejintae anticanceragent33diindolylmethaneinhibitsmultispeciesbiofilmformationbyacnecausingbacteriaandcandidaalbicans |