Cargando…

Rapid, Efficient, and Cost-Effective Gene Editing of Enterococcus faecium with CRISPR-Cas12a

Considered a serious threat by the Centers for Disease Control and Prevention, multidrug-resistant Enterococcus faecium is an increasing cause of hospital-acquired infection. Here, we provide details on a single-plasmid CRISPR-Cas12a system for generating clean deletions and insertions. Single manip...

Descripción completa

Detalles Bibliográficos
Autores principales: Chua, Michelle J., Collins, James
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8809335/
https://www.ncbi.nlm.nih.gov/pubmed/35107356
http://dx.doi.org/10.1128/spectrum.02427-21
Descripción
Sumario:Considered a serious threat by the Centers for Disease Control and Prevention, multidrug-resistant Enterococcus faecium is an increasing cause of hospital-acquired infection. Here, we provide details on a single-plasmid CRISPR-Cas12a system for generating clean deletions and insertions. Single manipulations were carried out in under 2 weeks, with successful deletions/insertions present in >80% of the clones tested. Using this method, we generated three individual clean deletion mutations in the acpH, treA, and lacL genes and inserted codon-optimized unaG, enabling green fluorescent protein (GFP)-like fluorescence under the control of the trehalase operon. The use of in vivo recombination for plasmid construction kept costs to a minimum. IMPORTANCE Enterococcus faecium is increasingly associated with hard-to-treat antibiotic-resistant infections. The ability to generate clean genomic alterations is the first step in generating a complete mechanistic understanding of how E. faecium acquires pathogenic traits and causes disease. Here, we show that CRISPR-Cas12a can be used to quickly (under 2 weeks) and cheaply delete or insert genes into the E. faecium genome. This substantial improvement over current methods should speed up research on this important opportunistic pathogen.