Cargando…

A Novel Bacteriophage with Broad Host Range against Clostridioides difficile Ribotype 078 Supports SlpA as the Likely Phage Receptor

Bacteriophages represent a promising option for the treatment of Clostridioides difficile (formerly Clostridium difficile) infection (CDI), which at present relies on conventional antibiotic therapy. The specificity of bacteriophages should prevent dysbiosis of the colonic microbiota associated with...

Descripción completa

Detalles Bibliográficos
Autores principales: Whittle, M. J., Bilverstone, T. W., van Esveld, R. J., Lücke, A. C., Lister, M. M., Kuehne, S. A., Minton, N. P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Microbiology 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8809339/
https://www.ncbi.nlm.nih.gov/pubmed/35107319
http://dx.doi.org/10.1128/spectrum.02295-21
_version_ 1784643991757651968
author Whittle, M. J.
Bilverstone, T. W.
van Esveld, R. J.
Lücke, A. C.
Lister, M. M.
Kuehne, S. A.
Minton, N. P.
author_facet Whittle, M. J.
Bilverstone, T. W.
van Esveld, R. J.
Lücke, A. C.
Lister, M. M.
Kuehne, S. A.
Minton, N. P.
author_sort Whittle, M. J.
collection PubMed
description Bacteriophages represent a promising option for the treatment of Clostridioides difficile (formerly Clostridium difficile) infection (CDI), which at present relies on conventional antibiotic therapy. The specificity of bacteriophages should prevent dysbiosis of the colonic microbiota associated with antibiotic treatment of CDI. While numerous phages have been isolated, none have been characterized with broad host range activity toward PCR ribotype (RT) 078 strains, despite their relevance to medicine and agriculture. In this study, we isolated four novel C. difficile myoviruses: ΦCD08011, ΦCD418, ΦCD1801, and ΦCD2301. Their characterization revealed that each was comparable with other C. difficile phages described in the literature, with the exception of ΦCD1801, which exhibited broad host range activity toward RT 078, infecting 15/16 (93.8%) of the isolates tested. In order for wild-type phages to be exploited in the effective treatment of CDI, an optimal phage cocktail must be assembled that provides broad coverage against all C. difficile RTs. We conducted experiments to support previous findings suggesting that SlpA, a constituent of the C. difficile surface layer (S-layer) is the likely phage receptor. Through interpretation of phage-binding assays, our data suggested that ΦCD1801 could bind to an RT 012 strain only in the presence of a plasmid-borne S-layer cassette corresponding to the slpA allele found in RT 078. Armed with this information, efforts should be directed toward the isolation of phages with broad host range activity toward defined S-layer cassette types, which could form the basis of an effective phage cocktail for the treatment of CDI. IMPORTANCE Research into phage therapy has seen a resurgence in recent years owing to growing concerns regarding antimicrobial resistance. Phage research for potential therapy against Clostridioides difficile infection (CDI) is in its infancy, where an optimal “one size fits all” phage cocktail is yet to be derived. The pursuit thus far has aimed to find phages with the broadest possible host range. However, for C. difficile strains belonging to certain PCR ribotypes (RTs), in particular RT 078, phages with broad host range activity are yet to be discovered. In this study, we isolate four novel myoviruses, including ΦCD1801, which exerts the broadest host range activity toward RT 078 reported in the literature. Through the application of ΦCD1801 to phage-binding assays, we provide data to support the prior notion that SlpA represents the likely phage receptor on the bacterial cell surface. Our finding directs research attention toward the isolation of phages with activity toward strains possessing defined S-layer cassette types.
format Online
Article
Text
id pubmed-8809339
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher American Society for Microbiology
record_format MEDLINE/PubMed
spelling pubmed-88093392022-02-09 A Novel Bacteriophage with Broad Host Range against Clostridioides difficile Ribotype 078 Supports SlpA as the Likely Phage Receptor Whittle, M. J. Bilverstone, T. W. van Esveld, R. J. Lücke, A. C. Lister, M. M. Kuehne, S. A. Minton, N. P. Microbiol Spectr Research Article Bacteriophages represent a promising option for the treatment of Clostridioides difficile (formerly Clostridium difficile) infection (CDI), which at present relies on conventional antibiotic therapy. The specificity of bacteriophages should prevent dysbiosis of the colonic microbiota associated with antibiotic treatment of CDI. While numerous phages have been isolated, none have been characterized with broad host range activity toward PCR ribotype (RT) 078 strains, despite their relevance to medicine and agriculture. In this study, we isolated four novel C. difficile myoviruses: ΦCD08011, ΦCD418, ΦCD1801, and ΦCD2301. Their characterization revealed that each was comparable with other C. difficile phages described in the literature, with the exception of ΦCD1801, which exhibited broad host range activity toward RT 078, infecting 15/16 (93.8%) of the isolates tested. In order for wild-type phages to be exploited in the effective treatment of CDI, an optimal phage cocktail must be assembled that provides broad coverage against all C. difficile RTs. We conducted experiments to support previous findings suggesting that SlpA, a constituent of the C. difficile surface layer (S-layer) is the likely phage receptor. Through interpretation of phage-binding assays, our data suggested that ΦCD1801 could bind to an RT 012 strain only in the presence of a plasmid-borne S-layer cassette corresponding to the slpA allele found in RT 078. Armed with this information, efforts should be directed toward the isolation of phages with broad host range activity toward defined S-layer cassette types, which could form the basis of an effective phage cocktail for the treatment of CDI. IMPORTANCE Research into phage therapy has seen a resurgence in recent years owing to growing concerns regarding antimicrobial resistance. Phage research for potential therapy against Clostridioides difficile infection (CDI) is in its infancy, where an optimal “one size fits all” phage cocktail is yet to be derived. The pursuit thus far has aimed to find phages with the broadest possible host range. However, for C. difficile strains belonging to certain PCR ribotypes (RTs), in particular RT 078, phages with broad host range activity are yet to be discovered. In this study, we isolate four novel myoviruses, including ΦCD1801, which exerts the broadest host range activity toward RT 078 reported in the literature. Through the application of ΦCD1801 to phage-binding assays, we provide data to support the prior notion that SlpA represents the likely phage receptor on the bacterial cell surface. Our finding directs research attention toward the isolation of phages with activity toward strains possessing defined S-layer cassette types. American Society for Microbiology 2022-02-02 /pmc/articles/PMC8809339/ /pubmed/35107319 http://dx.doi.org/10.1128/spectrum.02295-21 Text en Copyright © 2022 Whittle et al. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Research Article
Whittle, M. J.
Bilverstone, T. W.
van Esveld, R. J.
Lücke, A. C.
Lister, M. M.
Kuehne, S. A.
Minton, N. P.
A Novel Bacteriophage with Broad Host Range against Clostridioides difficile Ribotype 078 Supports SlpA as the Likely Phage Receptor
title A Novel Bacteriophage with Broad Host Range against Clostridioides difficile Ribotype 078 Supports SlpA as the Likely Phage Receptor
title_full A Novel Bacteriophage with Broad Host Range against Clostridioides difficile Ribotype 078 Supports SlpA as the Likely Phage Receptor
title_fullStr A Novel Bacteriophage with Broad Host Range against Clostridioides difficile Ribotype 078 Supports SlpA as the Likely Phage Receptor
title_full_unstemmed A Novel Bacteriophage with Broad Host Range against Clostridioides difficile Ribotype 078 Supports SlpA as the Likely Phage Receptor
title_short A Novel Bacteriophage with Broad Host Range against Clostridioides difficile Ribotype 078 Supports SlpA as the Likely Phage Receptor
title_sort novel bacteriophage with broad host range against clostridioides difficile ribotype 078 supports slpa as the likely phage receptor
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8809339/
https://www.ncbi.nlm.nih.gov/pubmed/35107319
http://dx.doi.org/10.1128/spectrum.02295-21
work_keys_str_mv AT whittlemj anovelbacteriophagewithbroadhostrangeagainstclostridioidesdifficileribotype078supportsslpaasthelikelyphagereceptor
AT bilverstonetw anovelbacteriophagewithbroadhostrangeagainstclostridioidesdifficileribotype078supportsslpaasthelikelyphagereceptor
AT vanesveldrj anovelbacteriophagewithbroadhostrangeagainstclostridioidesdifficileribotype078supportsslpaasthelikelyphagereceptor
AT luckeac anovelbacteriophagewithbroadhostrangeagainstclostridioidesdifficileribotype078supportsslpaasthelikelyphagereceptor
AT listermm anovelbacteriophagewithbroadhostrangeagainstclostridioidesdifficileribotype078supportsslpaasthelikelyphagereceptor
AT kuehnesa anovelbacteriophagewithbroadhostrangeagainstclostridioidesdifficileribotype078supportsslpaasthelikelyphagereceptor
AT mintonnp anovelbacteriophagewithbroadhostrangeagainstclostridioidesdifficileribotype078supportsslpaasthelikelyphagereceptor
AT whittlemj novelbacteriophagewithbroadhostrangeagainstclostridioidesdifficileribotype078supportsslpaasthelikelyphagereceptor
AT bilverstonetw novelbacteriophagewithbroadhostrangeagainstclostridioidesdifficileribotype078supportsslpaasthelikelyphagereceptor
AT vanesveldrj novelbacteriophagewithbroadhostrangeagainstclostridioidesdifficileribotype078supportsslpaasthelikelyphagereceptor
AT luckeac novelbacteriophagewithbroadhostrangeagainstclostridioidesdifficileribotype078supportsslpaasthelikelyphagereceptor
AT listermm novelbacteriophagewithbroadhostrangeagainstclostridioidesdifficileribotype078supportsslpaasthelikelyphagereceptor
AT kuehnesa novelbacteriophagewithbroadhostrangeagainstclostridioidesdifficileribotype078supportsslpaasthelikelyphagereceptor
AT mintonnp novelbacteriophagewithbroadhostrangeagainstclostridioidesdifficileribotype078supportsslpaasthelikelyphagereceptor