Cargando…
Improving machine learning performance on small chemical reaction data with unsupervised contrastive pretraining
Machine learning (ML) methods have great potential to transform chemical discovery by accelerating the exploration of chemical space and drawing scientific insights from data. However, modern chemical reaction ML models, such as those based on graph neural networks (GNNs), must be trained on a large...
Autores principales: | Wen, Mingjian, Blau, Samuel M., Xie, Xiaowei, Dwaraknath, Shyam, Persson, Kristin A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8809395/ https://www.ncbi.nlm.nih.gov/pubmed/35222929 http://dx.doi.org/10.1039/d1sc06515g |
Ejemplares similares
-
A chemically consistent graph architecture for massive reaction networks applied to solid-electrolyte interphase formation
por: Blau, Samuel M., et al.
Publicado: (2021) -
BonDNet: a graph neural network for the prediction of bond dissociation energies for charged molecules
por: Wen, Mingjian, et al.
Publicado: (2020) -
Quantum chemical calculations of lithium-ion battery electrolyte and interphase species
por: Spotte-Smith, Evan Walter Clark, et al.
Publicado: (2021) -
A graph-based network for predicting chemical reaction pathways in solid-state materials synthesis
por: McDermott, Matthew J., et al.
Publicado: (2021) -
High-throughput computation and evaluation of raman spectra
por: Liang, Qiaohao, et al.
Publicado: (2019)