Cargando…
Five-second coherence of a single spin with single-shot readout in silicon carbide
An outstanding hurdle for defect spin qubits in silicon carbide (SiC) is single-shot readout, a deterministic measurement of the quantum state. Here, we demonstrate single-shot readout of single defects in SiC via spin-to-charge conversion, whereby the defect’s spin state is mapped onto a long-lived...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8809532/ https://www.ncbi.nlm.nih.gov/pubmed/35108045 http://dx.doi.org/10.1126/sciadv.abm5912 |
Sumario: | An outstanding hurdle for defect spin qubits in silicon carbide (SiC) is single-shot readout, a deterministic measurement of the quantum state. Here, we demonstrate single-shot readout of single defects in SiC via spin-to-charge conversion, whereby the defect’s spin state is mapped onto a long-lived charge state. With this technique, we achieve over 80% readout fidelity without pre- or postselection, resulting in a high signal-to-noise ratio that enables us to measure long spin coherence times. Combined with pulsed dynamical decoupling sequences in an isotopically purified host material, we report single-spin T(2) > 5 seconds, over two orders of magnitude greater than previously reported in this system. The mapping of these coherent spin states onto single charges unlocks both single-shot readout for scalable quantum nodes and opportunities for electrical readout via integration with semiconductor devices. |
---|