Cargando…
Hybrid feature selection-based machine learning Classification system for the prediction of injury severity in single and multiple-vehicle accidents
To undertake a reliable analysis of injury severity in road traffic accidents, a complete understanding of important attributes is essential. As a result of the shift from traditional statistical parametric procedures to computer-aided methods, machine learning approaches have become an important as...
Autores principales: | Zhang, Shuguang, Khattak, Afaq, Matara, Caroline Mongina, Hussain, Arshad, Farooq, Asim |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8809572/ https://www.ncbi.nlm.nih.gov/pubmed/35108288 http://dx.doi.org/10.1371/journal.pone.0262941 |
Ejemplares similares
-
Severity of vehicle-to-vehicle accidents in the UAE: An exploratory analysis using machine learning algorithms
por: Maghelal, Praveen, et al.
Publicado: (2023) -
C-ITS Relevant Critical Vehicle-to-Vehicle Accident Scenarios for Accident Analysis
por: Bauder, Maximilian, et al.
Publicado: (2022) -
Bilateral Renal Hypoperfusion Following Motor Vehicle Accident
por: Joshi, Medha, et al.
Publicado: (2018) -
Multiclass Skin Lesion Classification Using Hybrid Deep Features Selection and Extreme Learning Machine
por: Afza, Farhat, et al.
Publicado: (2022) -
Predicting and Analyzing Road Traffic Injury Severity Using Boosting-Based Ensemble Learning Models with SHAPley Additive exPlanations
por: Dong, Sheng, et al.
Publicado: (2022)