Cargando…
Predicting the Travel Distance of Patients to Access Healthcare Using Deep Neural Networks
Objective: Improving geographical access remains a key issue in determining the sufficiency of regional medical resources during health policy design. However, patient choices can be the result of the complex interactivity of various factors. The aim of this study is to propose a deep neural network...
Formato: | Online Artículo Texto |
---|---|
Lenguaje: | English |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8809644/ https://www.ncbi.nlm.nih.gov/pubmed/35141054 http://dx.doi.org/10.1109/JTEHM.2021.3134106 |
Ejemplares similares
-
Prediction of Concrete Fragments Amount and Travel Distance under Impact Loading Using Deep Neural Network and Gradient Boosting Method
por: Kim, Kyeongjin, et al.
Publicado: (2022) -
Comparing absolute and relative distance and time travel measures of geographic access to healthcare facilities in rural Haiti
por: Bhangdia, Kayleigh Pavitra, et al.
Publicado: (2022) -
Representational Distance Learning for Deep Neural Networks
por: McClure, Patrick, et al.
Publicado: (2016) -
Urban nature visitation, accessibility, and impact of travel distance for sustainable cities
por: Talal, Michelle L., et al.
Publicado: (2023) -
Optimizing deep neural networks to predict the effect of social distancing on COVID-19 spread
por: Liu, Dixizi, et al.
Publicado: (2022)