Cargando…

Minimally invasive swine spine surgery training: technical aspects, benefits, and anatomical limitations

OBJECTIVE: To describe the technical specificities and feasibility of simulation of minimally invasive spine surgery in live pigs, as well as similarities and differences in comparison to surgery in humans. METHODS: A total of 22 Large White class swine models, weighing between 60 and 80kg, were sub...

Descripción completa

Detalles Bibliográficos
Autores principales: Gotfryd, Alberto Ofenhejm, de Paula, Fábio Chaud, Sauma, Marcel Lobato, Iutaka, Alexandre Sadao, Rodrigues, Luciano Miller Reis, Meyer, Guilherme Pereira Correa, Teivelis, Marcelo Passos, Poetscher, Arthur Werner, Del Curto, David, Kang, Davi Wen Wei, Cintra, Luciana, Gregores, Guilherme Buzon, Lenza, Mario, Ferretti, Mario
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Instituto Israelita de Ensino e Pesquisa Albert Einstein 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8809647/
https://www.ncbi.nlm.nih.gov/pubmed/35195190
http://dx.doi.org/10.31744/einstein_journal/2022AO6318
Descripción
Sumario:OBJECTIVE: To describe the technical specificities and feasibility of simulation of minimally invasive spine surgery in live pigs, as well as similarities and differences in comparison to surgery in humans. METHODS: A total of 22 Large White class swine models, weighing between 60 and 80kg, were submitted to surgical simulations, performed during theoretical-practical courses for training surgical techniques (microsurgical and endoscopic lumbar decompression; percutaneous pedicular instrumentation; lateral access to the thoracic spine, and anterior and retroperitoneal to the lumbar spine, and management of complications) by 86 spine surgeons. For each surgical technique, porcine anatomy (similarities and differences in relation to human anatomy), access route, and dimensions of the instruments and implants used were evaluated. Thus, the authors describe the feasibility of each operative simulation, as well as suggestions to optimize training. Study results are descriptive, with figures and drawings. RESULTS: Neural decompression surgeries (microsurgeries and endoscopic) and pedicular instrumentation presented higher similarities to surgery on humans. On the other hand, intradiscal procedures had limitations due to the narrow disc space in swines. We were able to simulate situations of surgical trauma in surgical complication scenarios, such as cerebrospinal fluid fistulas and excessive bleeding, with comparable realism to surgery on humans. CONCLUSION: A porcine model for simulation of minimally invasive spinal surgical techniques had similarities with surgery on humans, and is therefore feasible for surgeon training.