Cargando…

Injection-free multiwavelength electroluminescence devices based on monolayer semiconductors driven by an alternating field

Two-dimensional (2D) semiconductors have emerged as promising candidates for various optoelectronic devices especially electroluminescent (EL) devices. However, progress has been hampered by many challenges including metal contacts and injection, transport, and confinement of carriers due to small s...

Descripción completa

Detalles Bibliográficos
Autores principales: Feng, Jiabin, Li, Yongzhuo, Zhang, Jianxing, Tang, Yuqian, Sun, Hao, Gan, Lin, Ning, Cun-Zheng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8809679/
https://www.ncbi.nlm.nih.gov/pubmed/35108050
http://dx.doi.org/10.1126/sciadv.abl5134
Descripción
Sumario:Two-dimensional (2D) semiconductors have emerged as promising candidates for various optoelectronic devices especially electroluminescent (EL) devices. However, progress has been hampered by many challenges including metal contacts and injection, transport, and confinement of carriers due to small sizes of materials and the lack of proper double heterostructures. Here, we propose and demonstrate an alternative approach to conventional current injection devices. We take advantage of large exciton binding energies in 2D materials using impact generation of excitons through an alternating electric field, without requiring metal contacts to 2D materials. The conversion efficiency, defined as the ratio of the emitted photons to the preexisting carriers, can reach 16% at room temperature. In addition, we demonstrate the first multiwavelength 2D EL device, simultaneously operating at three wavelengths from red to near-infrared. Our approach provides an alternative to conventional current-based devices and could unleash the great potential of 2D materials for EL devices.