Cargando…
Towards accurate prediction of patient length of stay at emergency department: a GAN-driven deep learning framework
Recently, the hospital systems face a high influx of patients generated by several events, such as seasonal flows or health crises related to epidemics (e.g., COVID’19). Despite the extent of the care demands, hospital establishments, particularly emergency departments (EDs), must admit patients for...
Autores principales: | Kadri, Farid, Dairi, Abdelkader, Harrou, Fouzi, Sun, Ying |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8810344/ https://www.ncbi.nlm.nih.gov/pubmed/35132336 http://dx.doi.org/10.1007/s12652-022-03717-z |
Ejemplares similares
-
Forecasting emergency department overcrowding: A deep learning framework
por: Harrou, Fouzi, et al.
Publicado: (2020) -
EEG-Based Mental Tasks Recognition via a Deep Learning-Driven Anomaly Detector
por: Dairi, Abdelkader, et al.
Publicado: (2022) -
Semi-Supervised KPCA-Based Monitoring Techniques for Detecting COVID-19 Infection through Blood Tests
por: Harrou, Fouzi, et al.
Publicado: (2023) -
Deep learning methods for forecasting COVID-19 time-Series data: A Comparative study
por: Zeroual, Abdelhafid, et al.
Publicado: (2020) -
Comparative study of machine learning methods for COVID-19 transmission forecasting
por: Dairi, Abdelkader, et al.
Publicado: (2021)