Cargando…

Mutation bias reflects natural selection in Arabidopsis thaliana

Since the first half of the twentieth century, evolutionary theory has been dominated by the idea that mutations occur randomly with respect to their consequences(1). Here we test this assumption with large surveys of de novo mutations in the plant Arabidopsis thaliana. In contrast to expectations,...

Descripción completa

Detalles Bibliográficos
Autores principales: Monroe, J. Grey, Srikant, Thanvi, Carbonell-Bejerano, Pablo, Becker, Claude, Lensink, Mariele, Exposito-Alonso, Moises, Klein, Marie, Hildebrandt, Julia, Neumann, Manuela, Kliebenstein, Daniel, Weng, Mao-Lun, Imbert, Eric, Ågren, Jon, Rutter, Matthew T., Fenster, Charles B., Weigel, Detlef
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8810380/
https://www.ncbi.nlm.nih.gov/pubmed/35022609
http://dx.doi.org/10.1038/s41586-021-04269-6
Descripción
Sumario:Since the first half of the twentieth century, evolutionary theory has been dominated by the idea that mutations occur randomly with respect to their consequences(1). Here we test this assumption with large surveys of de novo mutations in the plant Arabidopsis thaliana. In contrast to expectations, we find that mutations occur less often in functionally constrained regions of the genome—mutation frequency is reduced by half inside gene bodies and by two-thirds in essential genes. With independent genomic mutation datasets, including from the largest Arabidopsis mutation accumulation experiment conducted to date, we demonstrate that epigenomic and physical features explain over 90% of variance in the genome-wide pattern of mutation bias surrounding genes. Observed mutation frequencies around genes in turn accurately predict patterns of genetic polymorphisms in natural Arabidopsis accessions (r = 0.96). That mutation bias is the primary force behind patterns of sequence evolution around genes in natural accessions is supported by analyses of allele frequencies. Finally, we find that genes subject to stronger purifying selection have a lower mutation rate. We conclude that epigenome-associated mutation bias(2) reduces the occurrence of deleterious mutations in Arabidopsis, challenging the prevailing paradigm that mutation is a directionless force in evolution.