Cargando…
Dual role of Mic10 in mitochondrial cristae organization and ATP synthase-linked metabolic adaptation and respiratory growth
Invaginations of the mitochondrial inner membrane, termed cristae, are hubs for oxidative phosphorylation. The mitochondrial contact site and cristae organizing system (MICOS) and the dimeric F(1)F(o)-ATP synthase play important roles in controlling cristae architecture. A fraction of the MICOS core...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Cell Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8810396/ https://www.ncbi.nlm.nih.gov/pubmed/35081352 http://dx.doi.org/10.1016/j.celrep.2021.110290 |
_version_ | 1784644247153016832 |
---|---|
author | Rampelt, Heike Wollweber, Florian Licheva, Mariya de Boer, Rinse Perschil, Inge Steidle, Liesa Becker, Thomas Bohnert, Maria van der Klei, Ida Kraft, Claudine van der Laan, Martin Pfanner, Nikolaus |
author_facet | Rampelt, Heike Wollweber, Florian Licheva, Mariya de Boer, Rinse Perschil, Inge Steidle, Liesa Becker, Thomas Bohnert, Maria van der Klei, Ida Kraft, Claudine van der Laan, Martin Pfanner, Nikolaus |
author_sort | Rampelt, Heike |
collection | PubMed |
description | Invaginations of the mitochondrial inner membrane, termed cristae, are hubs for oxidative phosphorylation. The mitochondrial contact site and cristae organizing system (MICOS) and the dimeric F(1)F(o)-ATP synthase play important roles in controlling cristae architecture. A fraction of the MICOS core subunit Mic10 is found in association with the ATP synthase, yet it is unknown whether this interaction is of relevance for mitochondrial or cellular functions. Here, we established conditions to selectively study the role of Mic10 at the ATP synthase. Mic10 variants impaired in MICOS functions stimulate ATP synthase oligomerization like wild-type Mic10 and promote efficient inner membrane energization, adaptation to non-fermentable carbon sources, and respiratory growth. Mic10's functions in respiratory growth largely depend on Mic10(ATPsynthase), not on Mic10(MICOS). We conclude that Mic10 plays a dual role as core subunit of MICOS and as partner of the F(1)F(o)-ATP synthase, serving distinct functions in cristae shaping and respiratory adaptation and growth. |
format | Online Article Text |
id | pubmed-8810396 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Cell Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-88103962022-02-08 Dual role of Mic10 in mitochondrial cristae organization and ATP synthase-linked metabolic adaptation and respiratory growth Rampelt, Heike Wollweber, Florian Licheva, Mariya de Boer, Rinse Perschil, Inge Steidle, Liesa Becker, Thomas Bohnert, Maria van der Klei, Ida Kraft, Claudine van der Laan, Martin Pfanner, Nikolaus Cell Rep Report Invaginations of the mitochondrial inner membrane, termed cristae, are hubs for oxidative phosphorylation. The mitochondrial contact site and cristae organizing system (MICOS) and the dimeric F(1)F(o)-ATP synthase play important roles in controlling cristae architecture. A fraction of the MICOS core subunit Mic10 is found in association with the ATP synthase, yet it is unknown whether this interaction is of relevance for mitochondrial or cellular functions. Here, we established conditions to selectively study the role of Mic10 at the ATP synthase. Mic10 variants impaired in MICOS functions stimulate ATP synthase oligomerization like wild-type Mic10 and promote efficient inner membrane energization, adaptation to non-fermentable carbon sources, and respiratory growth. Mic10's functions in respiratory growth largely depend on Mic10(ATPsynthase), not on Mic10(MICOS). We conclude that Mic10 plays a dual role as core subunit of MICOS and as partner of the F(1)F(o)-ATP synthase, serving distinct functions in cristae shaping and respiratory adaptation and growth. Cell Press 2022-01-25 /pmc/articles/PMC8810396/ /pubmed/35081352 http://dx.doi.org/10.1016/j.celrep.2021.110290 Text en © 2022 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Report Rampelt, Heike Wollweber, Florian Licheva, Mariya de Boer, Rinse Perschil, Inge Steidle, Liesa Becker, Thomas Bohnert, Maria van der Klei, Ida Kraft, Claudine van der Laan, Martin Pfanner, Nikolaus Dual role of Mic10 in mitochondrial cristae organization and ATP synthase-linked metabolic adaptation and respiratory growth |
title | Dual role of Mic10 in mitochondrial cristae organization and ATP synthase-linked metabolic adaptation and respiratory growth |
title_full | Dual role of Mic10 in mitochondrial cristae organization and ATP synthase-linked metabolic adaptation and respiratory growth |
title_fullStr | Dual role of Mic10 in mitochondrial cristae organization and ATP synthase-linked metabolic adaptation and respiratory growth |
title_full_unstemmed | Dual role of Mic10 in mitochondrial cristae organization and ATP synthase-linked metabolic adaptation and respiratory growth |
title_short | Dual role of Mic10 in mitochondrial cristae organization and ATP synthase-linked metabolic adaptation and respiratory growth |
title_sort | dual role of mic10 in mitochondrial cristae organization and atp synthase-linked metabolic adaptation and respiratory growth |
topic | Report |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8810396/ https://www.ncbi.nlm.nih.gov/pubmed/35081352 http://dx.doi.org/10.1016/j.celrep.2021.110290 |
work_keys_str_mv | AT rampeltheike dualroleofmic10inmitochondrialcristaeorganizationandatpsynthaselinkedmetabolicadaptationandrespiratorygrowth AT wollweberflorian dualroleofmic10inmitochondrialcristaeorganizationandatpsynthaselinkedmetabolicadaptationandrespiratorygrowth AT lichevamariya dualroleofmic10inmitochondrialcristaeorganizationandatpsynthaselinkedmetabolicadaptationandrespiratorygrowth AT deboerrinse dualroleofmic10inmitochondrialcristaeorganizationandatpsynthaselinkedmetabolicadaptationandrespiratorygrowth AT perschilinge dualroleofmic10inmitochondrialcristaeorganizationandatpsynthaselinkedmetabolicadaptationandrespiratorygrowth AT steidleliesa dualroleofmic10inmitochondrialcristaeorganizationandatpsynthaselinkedmetabolicadaptationandrespiratorygrowth AT beckerthomas dualroleofmic10inmitochondrialcristaeorganizationandatpsynthaselinkedmetabolicadaptationandrespiratorygrowth AT bohnertmaria dualroleofmic10inmitochondrialcristaeorganizationandatpsynthaselinkedmetabolicadaptationandrespiratorygrowth AT vanderkleiida dualroleofmic10inmitochondrialcristaeorganizationandatpsynthaselinkedmetabolicadaptationandrespiratorygrowth AT kraftclaudine dualroleofmic10inmitochondrialcristaeorganizationandatpsynthaselinkedmetabolicadaptationandrespiratorygrowth AT vanderlaanmartin dualroleofmic10inmitochondrialcristaeorganizationandatpsynthaselinkedmetabolicadaptationandrespiratorygrowth AT pfannernikolaus dualroleofmic10inmitochondrialcristaeorganizationandatpsynthaselinkedmetabolicadaptationandrespiratorygrowth |