Cargando…

Dual role of Mic10 in mitochondrial cristae organization and ATP synthase-linked metabolic adaptation and respiratory growth

Invaginations of the mitochondrial inner membrane, termed cristae, are hubs for oxidative phosphorylation. The mitochondrial contact site and cristae organizing system (MICOS) and the dimeric F(1)F(o)-ATP synthase play important roles in controlling cristae architecture. A fraction of the MICOS core...

Descripción completa

Detalles Bibliográficos
Autores principales: Rampelt, Heike, Wollweber, Florian, Licheva, Mariya, de Boer, Rinse, Perschil, Inge, Steidle, Liesa, Becker, Thomas, Bohnert, Maria, van der Klei, Ida, Kraft, Claudine, van der Laan, Martin, Pfanner, Nikolaus
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cell Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8810396/
https://www.ncbi.nlm.nih.gov/pubmed/35081352
http://dx.doi.org/10.1016/j.celrep.2021.110290
_version_ 1784644247153016832
author Rampelt, Heike
Wollweber, Florian
Licheva, Mariya
de Boer, Rinse
Perschil, Inge
Steidle, Liesa
Becker, Thomas
Bohnert, Maria
van der Klei, Ida
Kraft, Claudine
van der Laan, Martin
Pfanner, Nikolaus
author_facet Rampelt, Heike
Wollweber, Florian
Licheva, Mariya
de Boer, Rinse
Perschil, Inge
Steidle, Liesa
Becker, Thomas
Bohnert, Maria
van der Klei, Ida
Kraft, Claudine
van der Laan, Martin
Pfanner, Nikolaus
author_sort Rampelt, Heike
collection PubMed
description Invaginations of the mitochondrial inner membrane, termed cristae, are hubs for oxidative phosphorylation. The mitochondrial contact site and cristae organizing system (MICOS) and the dimeric F(1)F(o)-ATP synthase play important roles in controlling cristae architecture. A fraction of the MICOS core subunit Mic10 is found in association with the ATP synthase, yet it is unknown whether this interaction is of relevance for mitochondrial or cellular functions. Here, we established conditions to selectively study the role of Mic10 at the ATP synthase. Mic10 variants impaired in MICOS functions stimulate ATP synthase oligomerization like wild-type Mic10 and promote efficient inner membrane energization, adaptation to non-fermentable carbon sources, and respiratory growth. Mic10's functions in respiratory growth largely depend on Mic10(ATPsynthase), not on Mic10(MICOS). We conclude that Mic10 plays a dual role as core subunit of MICOS and as partner of the F(1)F(o)-ATP synthase, serving distinct functions in cristae shaping and respiratory adaptation and growth.
format Online
Article
Text
id pubmed-8810396
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Cell Press
record_format MEDLINE/PubMed
spelling pubmed-88103962022-02-08 Dual role of Mic10 in mitochondrial cristae organization and ATP synthase-linked metabolic adaptation and respiratory growth Rampelt, Heike Wollweber, Florian Licheva, Mariya de Boer, Rinse Perschil, Inge Steidle, Liesa Becker, Thomas Bohnert, Maria van der Klei, Ida Kraft, Claudine van der Laan, Martin Pfanner, Nikolaus Cell Rep Report Invaginations of the mitochondrial inner membrane, termed cristae, are hubs for oxidative phosphorylation. The mitochondrial contact site and cristae organizing system (MICOS) and the dimeric F(1)F(o)-ATP synthase play important roles in controlling cristae architecture. A fraction of the MICOS core subunit Mic10 is found in association with the ATP synthase, yet it is unknown whether this interaction is of relevance for mitochondrial or cellular functions. Here, we established conditions to selectively study the role of Mic10 at the ATP synthase. Mic10 variants impaired in MICOS functions stimulate ATP synthase oligomerization like wild-type Mic10 and promote efficient inner membrane energization, adaptation to non-fermentable carbon sources, and respiratory growth. Mic10's functions in respiratory growth largely depend on Mic10(ATPsynthase), not on Mic10(MICOS). We conclude that Mic10 plays a dual role as core subunit of MICOS and as partner of the F(1)F(o)-ATP synthase, serving distinct functions in cristae shaping and respiratory adaptation and growth. Cell Press 2022-01-25 /pmc/articles/PMC8810396/ /pubmed/35081352 http://dx.doi.org/10.1016/j.celrep.2021.110290 Text en © 2022 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
spellingShingle Report
Rampelt, Heike
Wollweber, Florian
Licheva, Mariya
de Boer, Rinse
Perschil, Inge
Steidle, Liesa
Becker, Thomas
Bohnert, Maria
van der Klei, Ida
Kraft, Claudine
van der Laan, Martin
Pfanner, Nikolaus
Dual role of Mic10 in mitochondrial cristae organization and ATP synthase-linked metabolic adaptation and respiratory growth
title Dual role of Mic10 in mitochondrial cristae organization and ATP synthase-linked metabolic adaptation and respiratory growth
title_full Dual role of Mic10 in mitochondrial cristae organization and ATP synthase-linked metabolic adaptation and respiratory growth
title_fullStr Dual role of Mic10 in mitochondrial cristae organization and ATP synthase-linked metabolic adaptation and respiratory growth
title_full_unstemmed Dual role of Mic10 in mitochondrial cristae organization and ATP synthase-linked metabolic adaptation and respiratory growth
title_short Dual role of Mic10 in mitochondrial cristae organization and ATP synthase-linked metabolic adaptation and respiratory growth
title_sort dual role of mic10 in mitochondrial cristae organization and atp synthase-linked metabolic adaptation and respiratory growth
topic Report
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8810396/
https://www.ncbi.nlm.nih.gov/pubmed/35081352
http://dx.doi.org/10.1016/j.celrep.2021.110290
work_keys_str_mv AT rampeltheike dualroleofmic10inmitochondrialcristaeorganizationandatpsynthaselinkedmetabolicadaptationandrespiratorygrowth
AT wollweberflorian dualroleofmic10inmitochondrialcristaeorganizationandatpsynthaselinkedmetabolicadaptationandrespiratorygrowth
AT lichevamariya dualroleofmic10inmitochondrialcristaeorganizationandatpsynthaselinkedmetabolicadaptationandrespiratorygrowth
AT deboerrinse dualroleofmic10inmitochondrialcristaeorganizationandatpsynthaselinkedmetabolicadaptationandrespiratorygrowth
AT perschilinge dualroleofmic10inmitochondrialcristaeorganizationandatpsynthaselinkedmetabolicadaptationandrespiratorygrowth
AT steidleliesa dualroleofmic10inmitochondrialcristaeorganizationandatpsynthaselinkedmetabolicadaptationandrespiratorygrowth
AT beckerthomas dualroleofmic10inmitochondrialcristaeorganizationandatpsynthaselinkedmetabolicadaptationandrespiratorygrowth
AT bohnertmaria dualroleofmic10inmitochondrialcristaeorganizationandatpsynthaselinkedmetabolicadaptationandrespiratorygrowth
AT vanderkleiida dualroleofmic10inmitochondrialcristaeorganizationandatpsynthaselinkedmetabolicadaptationandrespiratorygrowth
AT kraftclaudine dualroleofmic10inmitochondrialcristaeorganizationandatpsynthaselinkedmetabolicadaptationandrespiratorygrowth
AT vanderlaanmartin dualroleofmic10inmitochondrialcristaeorganizationandatpsynthaselinkedmetabolicadaptationandrespiratorygrowth
AT pfannernikolaus dualroleofmic10inmitochondrialcristaeorganizationandatpsynthaselinkedmetabolicadaptationandrespiratorygrowth