Cargando…
Predicting Diabetes and Estimating Its Economic Burden in China Using Autoregressive Integrated Moving Average Model
Objectives: To predict the number of people with diabetes and estimate the economic burden in China. Methods: Data from natural logarithmic transformation of the number of people with diabetes in China from 2000 to 2018 were selected to fit the autoregressive integrated moving average (ARIMA) model,...
Autores principales: | Zhu, Di, Zhou, Dongnan, Li, Nana, Han, Bing |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8810486/ https://www.ncbi.nlm.nih.gov/pubmed/35126031 http://dx.doi.org/10.3389/ijph.2021.1604449 |
Ejemplares similares
-
Global Forecasting Confirmed and Fatal Cases of COVID-19 Outbreak Using Autoregressive Integrated Moving Average Model
por: Dansana, Debabrata, et al.
Publicado: (2020) -
An Autoregressive Integrated Moving Average Model for Predicting Varicella Outbreaks — China, 2019
por: Wang, Miaomiao, et al.
Publicado: (2023) -
Application of one-, three-, and seven-day forecasts during early onset on the COVID-19 epidemic dataset using moving average, autoregressive, autoregressive moving average, autoregressive integrated moving average, and naïve forecasting methods
por: Lynch, Christopher J., et al.
Publicado: (2021) -
Application of an autoregressive integrated moving average model for predicting injury mortality in Xiamen, China
por: Lin, Yilan, et al.
Publicado: (2015) -
ARIMA model for predicting chronic kidney disease and estimating its economic burden in China
por: Jian, Yining, et al.
Publicado: (2022)