Cargando…
An extension of the proximal point algorithm beyond convexity
We introduce and investigate a new generalized convexity notion for functions called prox-convexity. The proximity operator of such a function is single-valued and firmly nonexpansive. We provide examples of (strongly) quasiconvex, weakly convex, and DC (difference of convex) functions that are prox...
Autores principales: | Grad, Sorin-Mihai, Lara, Felipe |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer US
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8810498/ https://www.ncbi.nlm.nih.gov/pubmed/35153381 http://dx.doi.org/10.1007/s10898-021-01081-4 |
Ejemplares similares
-
Vector optimization and monotone operators via convex duality: recent advances
por: Grad, Sorin-Mihai
Publicado: (2014) -
On the asymptotic behavior of the Douglas–Rachford and proximal-point algorithms for convex optimization
por: Banjac, Goran, et al.
Publicado: (2021) -
A primal-dual algorithm framework for convex saddle-point optimization
por: Zhang, Benxin, et al.
Publicado: (2017) -
Interior point approach to linear, quadratic and convex programming: algorithms and complexity
por: Hertog, D
Publicado: (1994) -
Existence of common fixed point and best proximity point for generalized nonexpansive type maps in convex metric space
por: Rathee, Savita, et al.
Publicado: (2016)