Cargando…

Potential application of biomimetic exosomes in cardiovascular disease: focused on ischemic heart disease

Cardiovascular disease, especially ischemic heart disease, is a major cause of mortality worldwide. Cardiac repair is one of the most promising strategies to address advanced cardiovascular diseases. Despite moderate improvement in heart function via stem cell therapy, there is no evidence of signif...

Descripción completa

Detalles Bibliográficos
Autores principales: Kang, In Sook, Kwon, Kihwan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Korean Society for Biochemistry and Molecular Biology 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8810547/
https://www.ncbi.nlm.nih.gov/pubmed/34903320
http://dx.doi.org/10.5483/BMBRep.2022.55.1.161
Descripción
Sumario:Cardiovascular disease, especially ischemic heart disease, is a major cause of mortality worldwide. Cardiac repair is one of the most promising strategies to address advanced cardiovascular diseases. Despite moderate improvement in heart function via stem cell therapy, there is no evidence of significant improvement in mortality and morbidity beyond standard therapy. The most salutary effect of stem cell therapy are attributed to the paracrine effects and the stem cell-derived exosomes are known as a major contributor. Hence, exosomes are emerging as a promising therapeutic agent and potent biomarkers of cardiovascular disease. Furthermore, they play a role as cellular cargo and facilitate intercellular communication. However, the clinical use of exosomes is hindered by the absence of a standard operating procedures for exosome isolation and characterization, problems related to yield, and heterogeneity. In addition, the successful clinical application of exosomes requires strategies to optimize cargo, improve targeted delivery, and reduce the elimination of exosomes. In this review, we discuss the basic concept of exosomes and stem cell-derived exosomes in cardiovascular disease, and introduce current efforts to overcome the limitations and maximize the benefit of exosomes including engineered biomimetic exosomes.