Cargando…

Bacterial distribution on the ocular surface of patients with primary Sjögren’s syndrome

Many studies have shown that gut microbial dysbiosis is a major factor in the etiology of autoimmune diseases but none have suggested that the ocular surface (OS) microbiome is associated with Sjögren’s syndrome (SS). In this prospective study, we analyzed bacterial distribution on the OS in patient...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Yong Chan, Ham, Baknoon, Kang, Kui Dong, Yun, Jun Myeong, Kwon, Man Jae, Kim, Hyun Seung, Hwang, Hyung Bin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8810764/
https://www.ncbi.nlm.nih.gov/pubmed/35110614
http://dx.doi.org/10.1038/s41598-022-05625-w
Descripción
Sumario:Many studies have shown that gut microbial dysbiosis is a major factor in the etiology of autoimmune diseases but none have suggested that the ocular surface (OS) microbiome is associated with Sjögren’s syndrome (SS). In this prospective study, we analyzed bacterial distribution on the OS in patients with primary SS. Among the 120 subjects included in this study, 48 patients (group A) had primary SS, whereas 72 subjects (group B) had dry eye symptoms that were unrelated to SS. We evaluated clinical dry eye parameters such as the OS disease index, ocular staining score (OSS), Schirmer’s I test, and tear break-up time (TBUT). Conjunctival swabs were used to analyze the microbial communities from the two groups. Bacterial 16S rRNA genes were sequenced using the Illumina MiSeq platform, and the data were analyzed using the QIIME 1.9.1 program. The Shannon index was significantly lower in group A than in group B microbiota (p < 0.05). An analysis of similarity using the Bray–Curtis distance method found no difference in beta-diversity between the two groups (p > 0.05). In group A, Actinobacteria at the phylum level and Corynebacteria at the genus level exhibited low abundance than group B, but the differences were not statistically significant (p > 0.05). SS apparently decreases the diversity of the OS microbial community. These observations may be related to the pathophysiology of SS and should be investigated in future studies.