Cargando…

Gut microbiome of the largest living rodent harbors unprecedented enzymatic systems to degrade plant polysaccharides

The largest living rodent, capybara, can efficiently depolymerize and utilize lignocellulosic biomass through microbial symbiotic mechanisms yet elusive. Herein, we elucidate the microbial community composition, enzymatic systems and metabolic pathways involved in the conversion of dietary fibers in...

Descripción completa

Detalles Bibliográficos
Autores principales: Cabral, Lucelia, Persinoti, Gabriela F., Paixão, Douglas A. A., Martins, Marcele P., Morais, Mariana A. B., Chinaglia, Mariana, Domingues, Mariane N., Sforca, Mauricio L., Pirolla, Renan A. S., Generoso, Wesley C., Santos, Clelton A., Maciel, Lucas F., Terrapon, Nicolas, Lombard, Vincent, Henrissat, Bernard, Murakami, Mario T.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8810776/
https://www.ncbi.nlm.nih.gov/pubmed/35110564
http://dx.doi.org/10.1038/s41467-022-28310-y
_version_ 1784644299408801792
author Cabral, Lucelia
Persinoti, Gabriela F.
Paixão, Douglas A. A.
Martins, Marcele P.
Morais, Mariana A. B.
Chinaglia, Mariana
Domingues, Mariane N.
Sforca, Mauricio L.
Pirolla, Renan A. S.
Generoso, Wesley C.
Santos, Clelton A.
Maciel, Lucas F.
Terrapon, Nicolas
Lombard, Vincent
Henrissat, Bernard
Murakami, Mario T.
author_facet Cabral, Lucelia
Persinoti, Gabriela F.
Paixão, Douglas A. A.
Martins, Marcele P.
Morais, Mariana A. B.
Chinaglia, Mariana
Domingues, Mariane N.
Sforca, Mauricio L.
Pirolla, Renan A. S.
Generoso, Wesley C.
Santos, Clelton A.
Maciel, Lucas F.
Terrapon, Nicolas
Lombard, Vincent
Henrissat, Bernard
Murakami, Mario T.
author_sort Cabral, Lucelia
collection PubMed
description The largest living rodent, capybara, can efficiently depolymerize and utilize lignocellulosic biomass through microbial symbiotic mechanisms yet elusive. Herein, we elucidate the microbial community composition, enzymatic systems and metabolic pathways involved in the conversion of dietary fibers into short-chain fatty acids, a main energy source for the host. In this microbiota, the unconventional enzymatic machinery from Fibrobacteres seems to drive cellulose degradation, whereas a diverse set of carbohydrate-active enzymes from Bacteroidetes, organized in polysaccharide utilization loci, are accounted to tackle complex hemicelluloses typically found in gramineous and aquatic plants. Exploring the genetic potential of this community, we discover a glycoside hydrolase family of β-galactosidases (named as GH173), and a carbohydrate-binding module family (named as CBM89) involved in xylan binding that establishes an unprecedented three-dimensional fold among associated modules to carbohydrate-active enzymes. Together, these results demonstrate how the capybara gut microbiota orchestrates the depolymerization and utilization of plant fibers, representing an untapped reservoir of enzymatic mechanisms to overcome the lignocellulose recalcitrance, a central challenge toward a sustainable and bio-based economy.
format Online
Article
Text
id pubmed-8810776
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-88107762022-02-10 Gut microbiome of the largest living rodent harbors unprecedented enzymatic systems to degrade plant polysaccharides Cabral, Lucelia Persinoti, Gabriela F. Paixão, Douglas A. A. Martins, Marcele P. Morais, Mariana A. B. Chinaglia, Mariana Domingues, Mariane N. Sforca, Mauricio L. Pirolla, Renan A. S. Generoso, Wesley C. Santos, Clelton A. Maciel, Lucas F. Terrapon, Nicolas Lombard, Vincent Henrissat, Bernard Murakami, Mario T. Nat Commun Article The largest living rodent, capybara, can efficiently depolymerize and utilize lignocellulosic biomass through microbial symbiotic mechanisms yet elusive. Herein, we elucidate the microbial community composition, enzymatic systems and metabolic pathways involved in the conversion of dietary fibers into short-chain fatty acids, a main energy source for the host. In this microbiota, the unconventional enzymatic machinery from Fibrobacteres seems to drive cellulose degradation, whereas a diverse set of carbohydrate-active enzymes from Bacteroidetes, organized in polysaccharide utilization loci, are accounted to tackle complex hemicelluloses typically found in gramineous and aquatic plants. Exploring the genetic potential of this community, we discover a glycoside hydrolase family of β-galactosidases (named as GH173), and a carbohydrate-binding module family (named as CBM89) involved in xylan binding that establishes an unprecedented three-dimensional fold among associated modules to carbohydrate-active enzymes. Together, these results demonstrate how the capybara gut microbiota orchestrates the depolymerization and utilization of plant fibers, representing an untapped reservoir of enzymatic mechanisms to overcome the lignocellulose recalcitrance, a central challenge toward a sustainable and bio-based economy. Nature Publishing Group UK 2022-02-02 /pmc/articles/PMC8810776/ /pubmed/35110564 http://dx.doi.org/10.1038/s41467-022-28310-y Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Cabral, Lucelia
Persinoti, Gabriela F.
Paixão, Douglas A. A.
Martins, Marcele P.
Morais, Mariana A. B.
Chinaglia, Mariana
Domingues, Mariane N.
Sforca, Mauricio L.
Pirolla, Renan A. S.
Generoso, Wesley C.
Santos, Clelton A.
Maciel, Lucas F.
Terrapon, Nicolas
Lombard, Vincent
Henrissat, Bernard
Murakami, Mario T.
Gut microbiome of the largest living rodent harbors unprecedented enzymatic systems to degrade plant polysaccharides
title Gut microbiome of the largest living rodent harbors unprecedented enzymatic systems to degrade plant polysaccharides
title_full Gut microbiome of the largest living rodent harbors unprecedented enzymatic systems to degrade plant polysaccharides
title_fullStr Gut microbiome of the largest living rodent harbors unprecedented enzymatic systems to degrade plant polysaccharides
title_full_unstemmed Gut microbiome of the largest living rodent harbors unprecedented enzymatic systems to degrade plant polysaccharides
title_short Gut microbiome of the largest living rodent harbors unprecedented enzymatic systems to degrade plant polysaccharides
title_sort gut microbiome of the largest living rodent harbors unprecedented enzymatic systems to degrade plant polysaccharides
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8810776/
https://www.ncbi.nlm.nih.gov/pubmed/35110564
http://dx.doi.org/10.1038/s41467-022-28310-y
work_keys_str_mv AT cabrallucelia gutmicrobiomeofthelargestlivingrodentharborsunprecedentedenzymaticsystemstodegradeplantpolysaccharides
AT persinotigabrielaf gutmicrobiomeofthelargestlivingrodentharborsunprecedentedenzymaticsystemstodegradeplantpolysaccharides
AT paixaodouglasaa gutmicrobiomeofthelargestlivingrodentharborsunprecedentedenzymaticsystemstodegradeplantpolysaccharides
AT martinsmarcelep gutmicrobiomeofthelargestlivingrodentharborsunprecedentedenzymaticsystemstodegradeplantpolysaccharides
AT moraismarianaab gutmicrobiomeofthelargestlivingrodentharborsunprecedentedenzymaticsystemstodegradeplantpolysaccharides
AT chinagliamariana gutmicrobiomeofthelargestlivingrodentharborsunprecedentedenzymaticsystemstodegradeplantpolysaccharides
AT dominguesmarianen gutmicrobiomeofthelargestlivingrodentharborsunprecedentedenzymaticsystemstodegradeplantpolysaccharides
AT sforcamauriciol gutmicrobiomeofthelargestlivingrodentharborsunprecedentedenzymaticsystemstodegradeplantpolysaccharides
AT pirollarenanas gutmicrobiomeofthelargestlivingrodentharborsunprecedentedenzymaticsystemstodegradeplantpolysaccharides
AT generosowesleyc gutmicrobiomeofthelargestlivingrodentharborsunprecedentedenzymaticsystemstodegradeplantpolysaccharides
AT santoscleltona gutmicrobiomeofthelargestlivingrodentharborsunprecedentedenzymaticsystemstodegradeplantpolysaccharides
AT maciellucasf gutmicrobiomeofthelargestlivingrodentharborsunprecedentedenzymaticsystemstodegradeplantpolysaccharides
AT terraponnicolas gutmicrobiomeofthelargestlivingrodentharborsunprecedentedenzymaticsystemstodegradeplantpolysaccharides
AT lombardvincent gutmicrobiomeofthelargestlivingrodentharborsunprecedentedenzymaticsystemstodegradeplantpolysaccharides
AT henrissatbernard gutmicrobiomeofthelargestlivingrodentharborsunprecedentedenzymaticsystemstodegradeplantpolysaccharides
AT murakamimariot gutmicrobiomeofthelargestlivingrodentharborsunprecedentedenzymaticsystemstodegradeplantpolysaccharides