Cargando…
Gut microbiome of the largest living rodent harbors unprecedented enzymatic systems to degrade plant polysaccharides
The largest living rodent, capybara, can efficiently depolymerize and utilize lignocellulosic biomass through microbial symbiotic mechanisms yet elusive. Herein, we elucidate the microbial community composition, enzymatic systems and metabolic pathways involved in the conversion of dietary fibers in...
Autores principales: | , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8810776/ https://www.ncbi.nlm.nih.gov/pubmed/35110564 http://dx.doi.org/10.1038/s41467-022-28310-y |
_version_ | 1784644299408801792 |
---|---|
author | Cabral, Lucelia Persinoti, Gabriela F. Paixão, Douglas A. A. Martins, Marcele P. Morais, Mariana A. B. Chinaglia, Mariana Domingues, Mariane N. Sforca, Mauricio L. Pirolla, Renan A. S. Generoso, Wesley C. Santos, Clelton A. Maciel, Lucas F. Terrapon, Nicolas Lombard, Vincent Henrissat, Bernard Murakami, Mario T. |
author_facet | Cabral, Lucelia Persinoti, Gabriela F. Paixão, Douglas A. A. Martins, Marcele P. Morais, Mariana A. B. Chinaglia, Mariana Domingues, Mariane N. Sforca, Mauricio L. Pirolla, Renan A. S. Generoso, Wesley C. Santos, Clelton A. Maciel, Lucas F. Terrapon, Nicolas Lombard, Vincent Henrissat, Bernard Murakami, Mario T. |
author_sort | Cabral, Lucelia |
collection | PubMed |
description | The largest living rodent, capybara, can efficiently depolymerize and utilize lignocellulosic biomass through microbial symbiotic mechanisms yet elusive. Herein, we elucidate the microbial community composition, enzymatic systems and metabolic pathways involved in the conversion of dietary fibers into short-chain fatty acids, a main energy source for the host. In this microbiota, the unconventional enzymatic machinery from Fibrobacteres seems to drive cellulose degradation, whereas a diverse set of carbohydrate-active enzymes from Bacteroidetes, organized in polysaccharide utilization loci, are accounted to tackle complex hemicelluloses typically found in gramineous and aquatic plants. Exploring the genetic potential of this community, we discover a glycoside hydrolase family of β-galactosidases (named as GH173), and a carbohydrate-binding module family (named as CBM89) involved in xylan binding that establishes an unprecedented three-dimensional fold among associated modules to carbohydrate-active enzymes. Together, these results demonstrate how the capybara gut microbiota orchestrates the depolymerization and utilization of plant fibers, representing an untapped reservoir of enzymatic mechanisms to overcome the lignocellulose recalcitrance, a central challenge toward a sustainable and bio-based economy. |
format | Online Article Text |
id | pubmed-8810776 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-88107762022-02-10 Gut microbiome of the largest living rodent harbors unprecedented enzymatic systems to degrade plant polysaccharides Cabral, Lucelia Persinoti, Gabriela F. Paixão, Douglas A. A. Martins, Marcele P. Morais, Mariana A. B. Chinaglia, Mariana Domingues, Mariane N. Sforca, Mauricio L. Pirolla, Renan A. S. Generoso, Wesley C. Santos, Clelton A. Maciel, Lucas F. Terrapon, Nicolas Lombard, Vincent Henrissat, Bernard Murakami, Mario T. Nat Commun Article The largest living rodent, capybara, can efficiently depolymerize and utilize lignocellulosic biomass through microbial symbiotic mechanisms yet elusive. Herein, we elucidate the microbial community composition, enzymatic systems and metabolic pathways involved in the conversion of dietary fibers into short-chain fatty acids, a main energy source for the host. In this microbiota, the unconventional enzymatic machinery from Fibrobacteres seems to drive cellulose degradation, whereas a diverse set of carbohydrate-active enzymes from Bacteroidetes, organized in polysaccharide utilization loci, are accounted to tackle complex hemicelluloses typically found in gramineous and aquatic plants. Exploring the genetic potential of this community, we discover a glycoside hydrolase family of β-galactosidases (named as GH173), and a carbohydrate-binding module family (named as CBM89) involved in xylan binding that establishes an unprecedented three-dimensional fold among associated modules to carbohydrate-active enzymes. Together, these results demonstrate how the capybara gut microbiota orchestrates the depolymerization and utilization of plant fibers, representing an untapped reservoir of enzymatic mechanisms to overcome the lignocellulose recalcitrance, a central challenge toward a sustainable and bio-based economy. Nature Publishing Group UK 2022-02-02 /pmc/articles/PMC8810776/ /pubmed/35110564 http://dx.doi.org/10.1038/s41467-022-28310-y Text en © The Author(s) 2022 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Cabral, Lucelia Persinoti, Gabriela F. Paixão, Douglas A. A. Martins, Marcele P. Morais, Mariana A. B. Chinaglia, Mariana Domingues, Mariane N. Sforca, Mauricio L. Pirolla, Renan A. S. Generoso, Wesley C. Santos, Clelton A. Maciel, Lucas F. Terrapon, Nicolas Lombard, Vincent Henrissat, Bernard Murakami, Mario T. Gut microbiome of the largest living rodent harbors unprecedented enzymatic systems to degrade plant polysaccharides |
title | Gut microbiome of the largest living rodent harbors unprecedented enzymatic systems to degrade plant polysaccharides |
title_full | Gut microbiome of the largest living rodent harbors unprecedented enzymatic systems to degrade plant polysaccharides |
title_fullStr | Gut microbiome of the largest living rodent harbors unprecedented enzymatic systems to degrade plant polysaccharides |
title_full_unstemmed | Gut microbiome of the largest living rodent harbors unprecedented enzymatic systems to degrade plant polysaccharides |
title_short | Gut microbiome of the largest living rodent harbors unprecedented enzymatic systems to degrade plant polysaccharides |
title_sort | gut microbiome of the largest living rodent harbors unprecedented enzymatic systems to degrade plant polysaccharides |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8810776/ https://www.ncbi.nlm.nih.gov/pubmed/35110564 http://dx.doi.org/10.1038/s41467-022-28310-y |
work_keys_str_mv | AT cabrallucelia gutmicrobiomeofthelargestlivingrodentharborsunprecedentedenzymaticsystemstodegradeplantpolysaccharides AT persinotigabrielaf gutmicrobiomeofthelargestlivingrodentharborsunprecedentedenzymaticsystemstodegradeplantpolysaccharides AT paixaodouglasaa gutmicrobiomeofthelargestlivingrodentharborsunprecedentedenzymaticsystemstodegradeplantpolysaccharides AT martinsmarcelep gutmicrobiomeofthelargestlivingrodentharborsunprecedentedenzymaticsystemstodegradeplantpolysaccharides AT moraismarianaab gutmicrobiomeofthelargestlivingrodentharborsunprecedentedenzymaticsystemstodegradeplantpolysaccharides AT chinagliamariana gutmicrobiomeofthelargestlivingrodentharborsunprecedentedenzymaticsystemstodegradeplantpolysaccharides AT dominguesmarianen gutmicrobiomeofthelargestlivingrodentharborsunprecedentedenzymaticsystemstodegradeplantpolysaccharides AT sforcamauriciol gutmicrobiomeofthelargestlivingrodentharborsunprecedentedenzymaticsystemstodegradeplantpolysaccharides AT pirollarenanas gutmicrobiomeofthelargestlivingrodentharborsunprecedentedenzymaticsystemstodegradeplantpolysaccharides AT generosowesleyc gutmicrobiomeofthelargestlivingrodentharborsunprecedentedenzymaticsystemstodegradeplantpolysaccharides AT santoscleltona gutmicrobiomeofthelargestlivingrodentharborsunprecedentedenzymaticsystemstodegradeplantpolysaccharides AT maciellucasf gutmicrobiomeofthelargestlivingrodentharborsunprecedentedenzymaticsystemstodegradeplantpolysaccharides AT terraponnicolas gutmicrobiomeofthelargestlivingrodentharborsunprecedentedenzymaticsystemstodegradeplantpolysaccharides AT lombardvincent gutmicrobiomeofthelargestlivingrodentharborsunprecedentedenzymaticsystemstodegradeplantpolysaccharides AT henrissatbernard gutmicrobiomeofthelargestlivingrodentharborsunprecedentedenzymaticsystemstodegradeplantpolysaccharides AT murakamimariot gutmicrobiomeofthelargestlivingrodentharborsunprecedentedenzymaticsystemstodegradeplantpolysaccharides |