Cargando…
Photothermal inactivation of universal viral particles by localized surface plasmon resonance mediated heating filter membrane
This study introduces localized surface plasmon resonance (L-SPR) mediated heating filter membrane (HFM) for inactivating universal viral particles by using the photothermal effect of plasmonic metal nanoparticles (NPs). Plasmonic metal NPs were coated onto filter membrane via a conventional spray-c...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8810778/ https://www.ncbi.nlm.nih.gov/pubmed/35110635 http://dx.doi.org/10.1038/s41598-022-05738-2 |
Sumario: | This study introduces localized surface plasmon resonance (L-SPR) mediated heating filter membrane (HFM) for inactivating universal viral particles by using the photothermal effect of plasmonic metal nanoparticles (NPs). Plasmonic metal NPs were coated onto filter membrane via a conventional spray-coating method. The surface temperature of the HFM could be controlled to approximately 40–60 °C at room temperature, owing to the photothermal effect of the gold (Au) NPs coated on them, under irradiation by visible light-emitting diodes. Due to the photothermal effect of the HFMs, the virus titer of H1Npdm09 was reduced by > 99.9%, the full inactivation time being < 10 min, confirming the 50% tissue culture infective dose (TCID(50)) assay. Crystal violet staining showed that the infectious samples with photothermal inactivation lost their infectivity against Mardin-Darby Canine Kidney cells. Moreover, photothermal inactivation could also be applied to reduce the infectivity of SARS-CoV-2, showing reduction rate of 99%. We used quantitative reverse transcription polymerase chain reaction (qRT-PCR) techniques to confirm the existence of viral genes on the surface of the HFM. The results of the TCID(50) assay, crystal violet staining method, and qRT-PCR showed that the effective and immediate reduction in viral infectivity possibly originated from the denaturation or deformation of membrane proteins and components. This study provides a new, simple, and effective method to inactivate viral infectivity, leading to its potential application in various fields of indoor air quality control and medical science. |
---|