Cargando…
Deep Learning in Large and Multi-Site Structural Brain MR Imaging Datasets
Large, multi-site, heterogeneous brain imaging datasets are increasingly required for the training, validation, and testing of advanced deep learning (DL)-based automated tools, including structural magnetic resonance (MR) image-based diagnostic and treatment monitoring approaches. When assembling a...
Autores principales: | Bento, Mariana, Fantini, Irene, Park, Justin, Rittner, Leticia, Frayne, Richard |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8811356/ https://www.ncbi.nlm.nih.gov/pubmed/35126080 http://dx.doi.org/10.3389/fninf.2021.805669 |
Ejemplares similares
-
Robust Cortical Thickness Morphometry of Neonatal Brain and Systematic Evaluation Using Multi-Site MRI Datasets
por: Liu, Mengting, et al.
Publicado: (2021) -
Multi-Coil MRI Reconstruction Challenge—Assessing Brain MRI Reconstruction Models and Their Generalizability to Varying Coil Configurations
por: Beauferris, Youssef, et al.
Publicado: (2022) -
Evaluation of deep learning models for quality control of MR spectra
por: Vaziri, Sana, et al.
Publicado: (2023) -
Glioma Grading on Conventional MR Images: A Deep Learning Study With Transfer Learning
por: Yang, Yang, et al.
Publicado: (2018) -
Automated Segmentation of Trigeminal Nerve and Cerebrovasculature in MR-Angiography Images by Deep Learning
por: Lin, Jinghui, et al.
Publicado: (2021)