Cargando…
When unsupervised training benefits category learning
Humans continuously categorise inputs, but only rarely receive explicit feedback as to whether or not they are correct. This implies that they may be integrating unsupervised information together with their sparse supervised data – a form of semi-supervised learning. However, experiments testing sem...
Autores principales: | Bröker, Franziska, Love, Bradley C., Dayan, Peter |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8811482/ https://www.ncbi.nlm.nih.gov/pubmed/34954447 http://dx.doi.org/10.1016/j.cognition.2021.104984 |
Ejemplares similares
-
The Underappreciated Benefits of Interleaving for Category Learning
por: Do, Lan Anh, et al.
Publicado: (2023) -
Selective attention in rat visual category learning
por: Broschard, Matthew B., et al.
Publicado: (2019) -
The feasibility and benefit of unsupervised at-home training of minimally invasive surgical skills
por: Joosten, Maja, et al.
Publicado: (2022) -
Implicitly learning when to be ready: From instances to categories
por: Kruijne, Wouter, et al.
Publicado: (2021) -
Sleep May Not Benefit Learning New Phonological Categories
por: Collet, Gregory, et al.
Publicado: (2012)