Cargando…
Simultaneous Hierarchical Bayesian Parameter Estimation for Reinforcement Learning and Drift Diffusion Models: a Tutorial and Links to Neural Data
Cognitive models have been instrumental for generating insights into the brain processes underlying learning and decision making. In reinforcement learning it has recently been shown that not only choice proportions but also their latency distributions can be well captured when the choice function i...
Autores principales: | Pedersen, Mads L., Frank, Michael J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8811713/ https://www.ncbi.nlm.nih.gov/pubmed/35128308 http://dx.doi.org/10.1007/s42113-020-00084-w |
Ejemplares similares
-
HDDM: Hierarchical Bayesian estimation of the Drift-Diffusion Model in Python
por: Wiecki, Thomas V., et al.
Publicado: (2013) -
Resting-State Functional Connectivity Estimated With Hierarchical Bayesian Diffuse Optical Tomography
por: Aihara, Takatsugu, et al.
Publicado: (2020) -
Data analysis: a Bayesian tutorial
por: Sivia, D S, et al.
Publicado: (2006) -
Hierarchical drift diffusion modeling uncovers multisensory benefit in numerosity discrimination tasks
por: Chau, Edwin, et al.
Publicado: (2021) -
A neural model of hierarchical reinforcement learning
por: Rasmussen, Daniel, et al.
Publicado: (2017)