Cargando…
A Comparative Study of the Performance for Predicting Biodegradability Classification: The Quantitative Structure–Activity Relationship Model vs the Graph Convolutional Network
[Image: see text] The prediction and evaluation of the biodegradability of molecules with computational methods are becoming increasingly important. Among the various methods, quantitative structure–activity relationship (QSAR) models have been demonstrated to predict the ready biodegradation of che...
Autores principales: | Lee, Myeonghun, Min, Kyoungmin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8811760/ https://www.ncbi.nlm.nih.gov/pubmed/35128273 http://dx.doi.org/10.1021/acsomega.1c06274 |
Ejemplares similares
-
Novel Solubility Prediction Models: Molecular Fingerprints
and Physicochemical Features vs Graph Convolutional Neural Networks
por: Lee, Sumin, et al.
Publicado: (2022) -
A Convolutional Neural Network and Graph Convolutional Network Based Framework for AD Classification
por: Lin, Lan, et al.
Publicado: (2023) -
A deep graph convolutional neural network architecture for graph classification
por: Zhou, Yuchen, et al.
Publicado: (2023) -
Single-cell classification using graph convolutional networks
por: Wang, Tianyu, et al.
Publicado: (2021) -
Geometric graphs from data to aid classification tasks with Graph Convolutional Networks
por: Qian, Yifan, et al.
Publicado: (2021)