Cargando…
“Porous and Yet Dense” Electrodes for High‐Volumetric‐Performance Electrochemical Capacitors: Principles, Advances, and Challenges
With the ever‐rapid miniaturization of portable, wearable electronics and Internet of Things, the volumetric performance is becoming a much more pertinent figure‐of‐merit than the conventionally used gravimetric parameters to evaluate the charge‐storage capacity of electrochemical capacitors (ECs)....
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8811823/ https://www.ncbi.nlm.nih.gov/pubmed/34796698 http://dx.doi.org/10.1002/advs.202103953 |
_version_ | 1784644514363736064 |
---|---|
author | Pan, Zhenghui Yang, Jie Kong, Junhua Loh, Xian Jun Wang, John Liu, Zhaolin |
author_facet | Pan, Zhenghui Yang, Jie Kong, Junhua Loh, Xian Jun Wang, John Liu, Zhaolin |
author_sort | Pan, Zhenghui |
collection | PubMed |
description | With the ever‐rapid miniaturization of portable, wearable electronics and Internet of Things, the volumetric performance is becoming a much more pertinent figure‐of‐merit than the conventionally used gravimetric parameters to evaluate the charge‐storage capacity of electrochemical capacitors (ECs). Thus, it is essential to design the ECs that can store as much energy as possible within a limited space. As the most critical component in ECs, “porous and yet dense” electrodes with large ion‐accessible surface area and optimal packing density are crucial to realize desired high volumetric performance, which have demonstrated to be rather challenging. In this review, the principles and fundamentals of ECs are first observed, focusing on the key understandings of the different charge storage mechanisms in porous electrodes. The recent and latest advances in high‐volumetric‐performance ECs, developed by the rational design and fabrication of “porous and yet dense” electrodes are then examined. Particular emphasis of discussions then concentrates on the key factors impacting the volumetric performance of porous carbon‐based electrodes. Finally, the currently faced challenges, further perspectives and opportunities on those purposely engineered porous electrodes for high‐volumetric‐performance EC are presented, aiming at providing a set of guidelines for further design of the next‐generation energy storage devices. |
format | Online Article Text |
id | pubmed-8811823 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-88118232022-02-08 “Porous and Yet Dense” Electrodes for High‐Volumetric‐Performance Electrochemical Capacitors: Principles, Advances, and Challenges Pan, Zhenghui Yang, Jie Kong, Junhua Loh, Xian Jun Wang, John Liu, Zhaolin Adv Sci (Weinh) Reviews With the ever‐rapid miniaturization of portable, wearable electronics and Internet of Things, the volumetric performance is becoming a much more pertinent figure‐of‐merit than the conventionally used gravimetric parameters to evaluate the charge‐storage capacity of electrochemical capacitors (ECs). Thus, it is essential to design the ECs that can store as much energy as possible within a limited space. As the most critical component in ECs, “porous and yet dense” electrodes with large ion‐accessible surface area and optimal packing density are crucial to realize desired high volumetric performance, which have demonstrated to be rather challenging. In this review, the principles and fundamentals of ECs are first observed, focusing on the key understandings of the different charge storage mechanisms in porous electrodes. The recent and latest advances in high‐volumetric‐performance ECs, developed by the rational design and fabrication of “porous and yet dense” electrodes are then examined. Particular emphasis of discussions then concentrates on the key factors impacting the volumetric performance of porous carbon‐based electrodes. Finally, the currently faced challenges, further perspectives and opportunities on those purposely engineered porous electrodes for high‐volumetric‐performance EC are presented, aiming at providing a set of guidelines for further design of the next‐generation energy storage devices. John Wiley and Sons Inc. 2021-11-18 /pmc/articles/PMC8811823/ /pubmed/34796698 http://dx.doi.org/10.1002/advs.202103953 Text en © 2021 The Authors. Advanced Science published by Wiley‐VCH GmbH https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Reviews Pan, Zhenghui Yang, Jie Kong, Junhua Loh, Xian Jun Wang, John Liu, Zhaolin “Porous and Yet Dense” Electrodes for High‐Volumetric‐Performance Electrochemical Capacitors: Principles, Advances, and Challenges |
title | “Porous and Yet Dense” Electrodes for High‐Volumetric‐Performance Electrochemical Capacitors: Principles, Advances, and Challenges |
title_full | “Porous and Yet Dense” Electrodes for High‐Volumetric‐Performance Electrochemical Capacitors: Principles, Advances, and Challenges |
title_fullStr | “Porous and Yet Dense” Electrodes for High‐Volumetric‐Performance Electrochemical Capacitors: Principles, Advances, and Challenges |
title_full_unstemmed | “Porous and Yet Dense” Electrodes for High‐Volumetric‐Performance Electrochemical Capacitors: Principles, Advances, and Challenges |
title_short | “Porous and Yet Dense” Electrodes for High‐Volumetric‐Performance Electrochemical Capacitors: Principles, Advances, and Challenges |
title_sort | “porous and yet dense” electrodes for high‐volumetric‐performance electrochemical capacitors: principles, advances, and challenges |
topic | Reviews |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8811823/ https://www.ncbi.nlm.nih.gov/pubmed/34796698 http://dx.doi.org/10.1002/advs.202103953 |
work_keys_str_mv | AT panzhenghui porousandyetdenseelectrodesforhighvolumetricperformanceelectrochemicalcapacitorsprinciplesadvancesandchallenges AT yangjie porousandyetdenseelectrodesforhighvolumetricperformanceelectrochemicalcapacitorsprinciplesadvancesandchallenges AT kongjunhua porousandyetdenseelectrodesforhighvolumetricperformanceelectrochemicalcapacitorsprinciplesadvancesandchallenges AT lohxianjun porousandyetdenseelectrodesforhighvolumetricperformanceelectrochemicalcapacitorsprinciplesadvancesandchallenges AT wangjohn porousandyetdenseelectrodesforhighvolumetricperformanceelectrochemicalcapacitorsprinciplesadvancesandchallenges AT liuzhaolin porousandyetdenseelectrodesforhighvolumetricperformanceelectrochemicalcapacitorsprinciplesadvancesandchallenges |