Cargando…

Hierarchically Multivalent Peptide–Nanoparticle Architectures: A Systematic Approach to Engineer Surface Adhesion

The multivalent binding effect has been the subject of extensive studies to modulate adhesion behaviors of various biological and engineered systems. However, precise control over the strong avidity‐based binding remains a significant challenge. Here, a set of engineering strategies are developed an...

Descripción completa

Detalles Bibliográficos
Autores principales: Jeong, Woo‐jin, Bu, Jiyoon, Jafari, Roya, Rehak, Pavel, Kubiatowicz, Luke J., Drelich, Adam J., Owen, Randall H., Nair, Ashita, Rawding, Piper A., Poellmann, Michael J., Hopkins, Caroline M., Král, Petr, Hong, Seungpyo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8811846/
https://www.ncbi.nlm.nih.gov/pubmed/34894089
http://dx.doi.org/10.1002/advs.202103098
_version_ 1784644519207108608
author Jeong, Woo‐jin
Bu, Jiyoon
Jafari, Roya
Rehak, Pavel
Kubiatowicz, Luke J.
Drelich, Adam J.
Owen, Randall H.
Nair, Ashita
Rawding, Piper A.
Poellmann, Michael J.
Hopkins, Caroline M.
Král, Petr
Hong, Seungpyo
author_facet Jeong, Woo‐jin
Bu, Jiyoon
Jafari, Roya
Rehak, Pavel
Kubiatowicz, Luke J.
Drelich, Adam J.
Owen, Randall H.
Nair, Ashita
Rawding, Piper A.
Poellmann, Michael J.
Hopkins, Caroline M.
Král, Petr
Hong, Seungpyo
author_sort Jeong, Woo‐jin
collection PubMed
description The multivalent binding effect has been the subject of extensive studies to modulate adhesion behaviors of various biological and engineered systems. However, precise control over the strong avidity‐based binding remains a significant challenge. Here, a set of engineering strategies are developed and tested to systematically enhance the multivalent binding of peptides in a stepwise manner. Poly(amidoamine) (PAMAM) dendrimers are employed to increase local peptide densities on a substrate, resulting in hierarchically multivalent architectures (HMAs) that display multivalent dendrimer–peptide conjugates (DPCs) with various configurations. To control binding behaviors, effects of the three major components of the HMAs are investigated: i) poly(ethylene glycol) (PEG) linkers as spacers between conjugated peptides; ii) multiple peptides on the DPCs; and iii) various surface arrangements of HMAs (i.e., a mixture of DPCs each containing different peptides vs DPCs cofunctionalized with multiple peptides). The optimized HMA configuration enables significantly enhanced target cell binding with high selectivity compared to the control surfaces directly conjugated with peptides. The engineering approaches presented herein can be applied individually or in combination, providing guidelines for the effective utilization of biomolecular multivalent interactions using DPC‐based HMAs.
format Online
Article
Text
id pubmed-8811846
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-88118462022-02-08 Hierarchically Multivalent Peptide–Nanoparticle Architectures: A Systematic Approach to Engineer Surface Adhesion Jeong, Woo‐jin Bu, Jiyoon Jafari, Roya Rehak, Pavel Kubiatowicz, Luke J. Drelich, Adam J. Owen, Randall H. Nair, Ashita Rawding, Piper A. Poellmann, Michael J. Hopkins, Caroline M. Král, Petr Hong, Seungpyo Adv Sci (Weinh) Research Articles The multivalent binding effect has been the subject of extensive studies to modulate adhesion behaviors of various biological and engineered systems. However, precise control over the strong avidity‐based binding remains a significant challenge. Here, a set of engineering strategies are developed and tested to systematically enhance the multivalent binding of peptides in a stepwise manner. Poly(amidoamine) (PAMAM) dendrimers are employed to increase local peptide densities on a substrate, resulting in hierarchically multivalent architectures (HMAs) that display multivalent dendrimer–peptide conjugates (DPCs) with various configurations. To control binding behaviors, effects of the three major components of the HMAs are investigated: i) poly(ethylene glycol) (PEG) linkers as spacers between conjugated peptides; ii) multiple peptides on the DPCs; and iii) various surface arrangements of HMAs (i.e., a mixture of DPCs each containing different peptides vs DPCs cofunctionalized with multiple peptides). The optimized HMA configuration enables significantly enhanced target cell binding with high selectivity compared to the control surfaces directly conjugated with peptides. The engineering approaches presented herein can be applied individually or in combination, providing guidelines for the effective utilization of biomolecular multivalent interactions using DPC‐based HMAs. John Wiley and Sons Inc. 2021-12-11 /pmc/articles/PMC8811846/ /pubmed/34894089 http://dx.doi.org/10.1002/advs.202103098 Text en © 2021 The Authors. Advanced Science published by Wiley‐VCH GmbH https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Jeong, Woo‐jin
Bu, Jiyoon
Jafari, Roya
Rehak, Pavel
Kubiatowicz, Luke J.
Drelich, Adam J.
Owen, Randall H.
Nair, Ashita
Rawding, Piper A.
Poellmann, Michael J.
Hopkins, Caroline M.
Král, Petr
Hong, Seungpyo
Hierarchically Multivalent Peptide–Nanoparticle Architectures: A Systematic Approach to Engineer Surface Adhesion
title Hierarchically Multivalent Peptide–Nanoparticle Architectures: A Systematic Approach to Engineer Surface Adhesion
title_full Hierarchically Multivalent Peptide–Nanoparticle Architectures: A Systematic Approach to Engineer Surface Adhesion
title_fullStr Hierarchically Multivalent Peptide–Nanoparticle Architectures: A Systematic Approach to Engineer Surface Adhesion
title_full_unstemmed Hierarchically Multivalent Peptide–Nanoparticle Architectures: A Systematic Approach to Engineer Surface Adhesion
title_short Hierarchically Multivalent Peptide–Nanoparticle Architectures: A Systematic Approach to Engineer Surface Adhesion
title_sort hierarchically multivalent peptide–nanoparticle architectures: a systematic approach to engineer surface adhesion
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8811846/
https://www.ncbi.nlm.nih.gov/pubmed/34894089
http://dx.doi.org/10.1002/advs.202103098
work_keys_str_mv AT jeongwoojin hierarchicallymultivalentpeptidenanoparticlearchitecturesasystematicapproachtoengineersurfaceadhesion
AT bujiyoon hierarchicallymultivalentpeptidenanoparticlearchitecturesasystematicapproachtoengineersurfaceadhesion
AT jafariroya hierarchicallymultivalentpeptidenanoparticlearchitecturesasystematicapproachtoengineersurfaceadhesion
AT rehakpavel hierarchicallymultivalentpeptidenanoparticlearchitecturesasystematicapproachtoengineersurfaceadhesion
AT kubiatowiczlukej hierarchicallymultivalentpeptidenanoparticlearchitecturesasystematicapproachtoengineersurfaceadhesion
AT drelichadamj hierarchicallymultivalentpeptidenanoparticlearchitecturesasystematicapproachtoengineersurfaceadhesion
AT owenrandallh hierarchicallymultivalentpeptidenanoparticlearchitecturesasystematicapproachtoengineersurfaceadhesion
AT nairashita hierarchicallymultivalentpeptidenanoparticlearchitecturesasystematicapproachtoengineersurfaceadhesion
AT rawdingpipera hierarchicallymultivalentpeptidenanoparticlearchitecturesasystematicapproachtoengineersurfaceadhesion
AT poellmannmichaelj hierarchicallymultivalentpeptidenanoparticlearchitecturesasystematicapproachtoengineersurfaceadhesion
AT hopkinscarolinem hierarchicallymultivalentpeptidenanoparticlearchitecturesasystematicapproachtoengineersurfaceadhesion
AT kralpetr hierarchicallymultivalentpeptidenanoparticlearchitecturesasystematicapproachtoengineersurfaceadhesion
AT hongseungpyo hierarchicallymultivalentpeptidenanoparticlearchitecturesasystematicapproachtoengineersurfaceadhesion