Cargando…

Expression, Purification, and Refolding of Chikungunya Virus Full-Length Envelope E2 Protein along with B-Cell and T-Cell Epitope Analyses Using Immuno-Informatics Approaches

[Image: see text] Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus, which causes severe illness in humans and is responsible for epidemic outbreaks in Africa, Asia, North and South America, and Europe. Despite its increased global prevalence, no licensed vaccines are available to date...

Descripción completa

Detalles Bibliográficos
Autores principales: Shukla, Manisha, Chandley, Pankaj, Tapryal, Suman, Kumar, Narendra, Mukherjee, Sulakshana P., Rohatgi, Soma
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8811930/
https://www.ncbi.nlm.nih.gov/pubmed/35128258
http://dx.doi.org/10.1021/acsomega.1c05975
Descripción
Sumario:[Image: see text] Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus, which causes severe illness in humans and is responsible for epidemic outbreaks in Africa, Asia, North and South America, and Europe. Despite its increased global prevalence, no licensed vaccines are available to date for treating or preventing CHIKV infection. The envelope E2 protein is one of the promising subunit vaccine candidates against CHIKV. In this study, we describe successful cloning, expression, and purification of CHIKV E2 full-length (E2-FL) and truncated (E2-ΔC and E2-ΔNC) proteins in the Escherichia coli expression system. The recombinant E2 proteins were purified from inclusion bodies using Ni-NTA chromatography. Further, we describe a detailed refolding procedure for obtaining the CHIKV E2-FL protein in native conformation, which was confirmed using circular dichroism and Fourier transform infrared spectroscopy. BALB/c mice immunized with the three different E2 proteins exhibited increased E2-specific antibody titers compared to sham-immunized controls, suggesting induction of strong humoral immune response. On analyzing the E2-specific antibody response generated in immunized mice, the CHIKV E2-FL protein was observed to be the most immunogenic among the three different CHIKV E2 antigens used in the study. Our B-cell and T-cell epitope mapping results indicate that the presence of specific immunogenic peptides located in the N-terminal and C-terminal regions of the CHIKV E2-FL protein may contribute to its increased immunogenicity, compared to truncated CHIKV E2 proteins. In summary, our study provides a detailed protocol for expressing, purifying, and refolding of the CHIKV E2-FL protein and provides an understanding of its immunogenic epitopes, which can be exploited for the development of novel multiepitope-based anti-CHIKV vaccine strategies.