Cargando…
Radiomic analysis for predicting prognosis of colorectal cancer from preoperative (18)F-FDG PET/CT
BACKGROUND: To develop and validate a survival model with clinico-biological features and (18)F- FDG PET/CT radiomic features via machine learning, and for predicting the prognosis from the primary tumor of colorectal cancer. METHODS: A total of 196 pathologically confirmed patients with colorectal...
Autores principales: | Lv, Lilang, Xin, Bowen, Hao, Yichao, Yang, Ziyi, Xu, Junyan, Wang, Lisheng, Wang, Xiuying, Song, Shaoli, Guo, Xiaomao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8812058/ https://www.ncbi.nlm.nih.gov/pubmed/35109864 http://dx.doi.org/10.1186/s12967-022-03262-5 |
Ejemplares similares
-
Quantitative Prediction of Microsatellite Instability in Colorectal Cancer With Preoperative PET/CT-Based Radiomics
por: Li, Jiaru, et al.
Publicado: (2021) -
Preoperative (18)F-FDG PET/CT radiomics analysis for predicting HER2 expression and prognosis in gastric cancer
por: Liu, Qiufang, et al.
Publicado: (2023) -
(18)F-FDG PET/CT Radiomics for Preoperative Prediction of Lymph Node Metastases and Nodal Staging in Gastric Cancer
por: Liu, Qiufang, et al.
Publicado: (2021) -
(18)F-FDG PET/CT radiomic analysis for classifying and predicting microvascular invasion in hepatocellular carcinoma and intrahepatic cholangiocarcinoma
por: Jiang, Chunjuan, et al.
Publicado: (2022) -
Predicting EGFR mutation subtypes in lung adenocarcinoma using (18)F-FDG PET/CT radiomic features
por: Liu, Qiufang, et al.
Publicado: (2020)