Cargando…

Analysis of autosomal dominant genes impacted by copy number loss in 24,844 fetuses without structural abnormalities

BACKGROUND: The broad application of high-resolution chromosome detection technology in prenatal diagnosis has identified copy number loss (CNL) involving autosomal dominant (AD) genes in certain fetuses. Exon sequencing of fetuses exhibiting structural anomalies yields diagnostic information in up...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Lin, Wang, Li, Yin, Daishu, Tang, Feng, Zeng, Yang, Zhu, Hongmei, Wang, Jing
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8812209/
https://www.ncbi.nlm.nih.gov/pubmed/35109792
http://dx.doi.org/10.1186/s12864-022-08340-y
Descripción
Sumario:BACKGROUND: The broad application of high-resolution chromosome detection technology in prenatal diagnosis has identified copy number loss (CNL) involving autosomal dominant (AD) genes in certain fetuses. Exon sequencing of fetuses exhibiting structural anomalies yields diagnostic information in up to 20% of cases. However, there is currently no relevant literature about the genetic origin and pregnancy outcome of CNL involving AD genes in fetuses without structural abnormalities. RESULTS: This was a prospective study involving pregnant women who underwent amniocentesis for fetal copy number variation sequencing (CNVseq). Detection of parent-of-origin was suggested in cases of samples with CNL involving AD genes and the pregnancy outcome was monitored. Amniotic fluid samples from 24,844 fetuses without structural abnormalities were successfully tested via CNVseq. The results showed that 134 fetuses (0.5%) had small CNL (< 10 Mb) containing AD genes, after excluding microdeletion and microduplication syndrome and polymorphisms. By monitoring the pregnancy outcomes of the 134 fetuses, we found that 104 (77.6%) were good, 13 (9.7%) were adverse, and 17 (12.7%) pregnant women voluntarily chose to terminate pregnancy. Of the 13 fetuses with adverse pregnancy outcomes, only 2 fetuses had phenotypes consistent with those of diseases caused by AD genes involved in CNL. CONCLUSIONS: The overall prognosis for fetuses without family history or structural abnormalities but with small CNL containing AD genes detected during pregnancy is good. The genetic origin, overlap status of established haploinsufficient gene and/or region, size of the CNL, and genetic mode may affect the pathogenicity of the CNL. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12864-022-08340-y.