Cargando…
Current and future distribution of Ixodes scapularis ticks in Québec: Field validation of a predictive model
The incidence of Lyme disease is increasing in Québec and is closely linked to the distribution of Ixodes scapularis ticks. A time-to-establishment model developed in 2012 by Leighton and colleagues predicted the year of tick population establishment for each municipality in eastern Canada. To valid...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8812838/ https://www.ncbi.nlm.nih.gov/pubmed/35113941 http://dx.doi.org/10.1371/journal.pone.0263243 |
Sumario: | The incidence of Lyme disease is increasing in Québec and is closely linked to the distribution of Ixodes scapularis ticks. A time-to-establishment model developed in 2012 by Leighton and colleagues predicted the year of tick population establishment for each municipality in eastern Canada. To validate if this model correctly predicted tick distribution in Québec, predicted tick establishment was compared to field data from active tick surveillance (2010–2018) using two criteria: i) the detection of at least one tick and ii) the detection of the three questing stages of the tick. The speed of tick establishment and the increase in the exposed human population by 2100 were predicted with the time-to-establishment model. Field observations were consistent with model predictions. Ticks were detected on average 3 years after the predicted year. The probability of tick detection is significantly higher after the predicted year than before (61% vs 27% of collections). The trend was similar for the detection of three tick stages (16% vs 9% of collections). The average speed of tick range expansion was estimated by the model to be 18 km/year in Québec, with 90% of the human population exposed by 2027. The validation of the time-to-establishment model using field data confirmed that it could be used to project I. scapularis range expansion in Québec, and consequently the increase in Lyme disease risk over the coming decades. This will help public health authorities anticipate and adapt preventive measures, especially in areas not yet affected by Lyme disease. |
---|