Cargando…
Dynamic inference of cell developmental complex energy landscape from time series single-cell transcriptomic data
Time series single-cell RNA sequencing (scRNA-seq) data are emerging. However, dynamic inference of an evolving cell population from time series scRNA-seq data is challenging owing to the stochasticity and nonlinearity of the underlying biological processes. This calls for the development of mathema...
Autores principales: | Jiang, Qi, Zhang, Shuo, Wan, Lin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8812873/ https://www.ncbi.nlm.nih.gov/pubmed/35073331 http://dx.doi.org/10.1371/journal.pcbi.1009821 |
Ejemplares similares
-
scEpath: energy landscape-based inference of transition probabilities and cellular trajectories from single-cell transcriptomic data
por: Jin, Suoqin, et al.
Publicado: (2018) -
Inferring transcriptomic cell states and transitions only from time series transcriptome data
por: Jo, Kyuri, et al.
Publicado: (2021) -
Inferring single-cell transcriptomic dynamics with structured latent gene expression dynamics
por: Farrell, Spencer, et al.
Publicado: (2023) -
Dynamics of embryonic stem cell differentiation inferred from single-cell transcriptomics show a series of transitions through discrete cell states
por: Jang, Sumin, et al.
Publicado: (2017) -
Integrative Single‐Cell Transcriptomics and Epigenomics Mapping of the Fetal Retina Developmental Dynamics
por: Li, Ruonan, et al.
Publicado: (2023)