Cargando…

Artificial Intelligence for Classifying and Archiving Orthodontic Images

One of the main requirements for orthodontic treatment is continuous image acquisition. However, the conventional system of orthodontic image acquisition, which includes manual classification, archiving, and monitoring, is time-consuming and prone to errors caused by fatigue. This study is aimed at...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Shihao, Guo, Zizhao, Lin, Jiao, Ying, Sancong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8813223/
https://www.ncbi.nlm.nih.gov/pubmed/35127938
http://dx.doi.org/10.1155/2022/1473977
Descripción
Sumario:One of the main requirements for orthodontic treatment is continuous image acquisition. However, the conventional system of orthodontic image acquisition, which includes manual classification, archiving, and monitoring, is time-consuming and prone to errors caused by fatigue. This study is aimed at developing an effective artificial intelligence tool for the automated classification and monitoring of orthodontic images. We comprehensively evaluated the ability of a deep learning model based on Deep hidden IDentity (DeepID) features to classify and archive photographs and radiographs. This evaluation was performed using a dataset of >14,000 images encompassing all 14 categories of orthodontic images. Our model automatically classified orthodontic images in an external dataset with an accuracy of 0.994 and macro area under the curve of 1.00 in 0.08 min. This was 236 times faster than a human expert (18.93 min). Furthermore, human experts with deep learning assistance required an average of 8.10 min to classify images in the external dataset, much shorter than 18.93 min. We conclude that deep learning can improve the accuracy, speed, and efficiency of classification, archiving, and monitoring of orthodontic images.