Cargando…
Machine Learning Analysis of Immune Cells for Diagnosis and Prognosis of Cutaneous Melanoma
Tumor infiltration, known to associate with various cancer initiations and progressions, is a promising therapeutic target for aggressive cutaneous melanoma. Then, the relative infiltration of 24 kinds of immune cells in melanoma was assessed by a single sample gene set enrichment analysis (ssGSEA)...
Autores principales: | Du, Huibin, He, Yan, Lu, Wei, Han, Yu, Wan, Qi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8813285/ https://www.ncbi.nlm.nih.gov/pubmed/35126517 http://dx.doi.org/10.1155/2022/7357637 |
Ejemplares similares
-
m5C-Related Signatures for Predicting Prognosis in Cutaneous Melanoma with Machine Learning
por: Huang, Maoxin, et al.
Publicado: (2021) -
Identification of immune-related biomarkers associated with tumorigenesis and prognosis in cutaneous melanoma patients
por: Huang, Biao, et al.
Publicado: (2020) -
Identification of Pyroptosis-Relevant Signature in Tumor Immune Microenvironment and Prognosis in Skin Cutaneous Melanoma Using Network Analysis
por: Zhu, Yun, et al.
Publicado: (2023) -
Leveraging a disulfidptosis-related signature to predict the prognosis and immunotherapy effectiveness of cutaneous melanoma based on machine learning
por: Zhao, Yi, et al.
Publicado: (2023) -
A Novel Four Genes of Prognostic Signature for Uveal Melanoma
por: Liu, Yan, et al.
Publicado: (2022)