Cargando…
Capturing Biomarkers and Molecular Targets in Cellular Landscapes From Dynamic Reaction Network Models and Machine Learning
Computational dynamic ODE models of cell function describing biochemical reactions have been created for decades, but on a small scale. Still, they have been highly effective in describing and predicting behaviors. For example, oscillatory phospho-ERK levels were predicted and confirmed in MAPK sign...
Autor principal: | Mertins, Susan D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8813744/ https://www.ncbi.nlm.nih.gov/pubmed/35127516 http://dx.doi.org/10.3389/fonc.2021.805592 |
Ejemplares similares
-
The Cellular and Molecular Landscape of Synchronous Pediatric Sialoblastoma and Hepatoblastoma
por: Yang, Ran, et al.
Publicado: (2022) -
Latest updates on cellular and molecular biomarkers of gliomas
por: Bou Zerdan, Maroun, et al.
Publicado: (2022) -
Machine learning-based neddylation landscape indicates different prognosis and immune microenvironment in endometrial cancer
por: Li, Yi, et al.
Publicado: (2023) -
Cellular and Molecular Biomarkers Predictive of Response to Immunotherapy in Acute Myeloid Leukemia
por: Wiatrowski, Kyle, et al.
Publicado: (2022) -
Radiomic Machine-Learning Classifiers for Prognostic Biomarkers of Head and Neck Cancer
por: Parmar, Chintan, et al.
Publicado: (2015)