Cargando…
Deep Learning Analysis of Cardiac MRI in Legacy Datasets: Multi-Ethnic Study of Atherosclerosis
The Multi-Ethnic Study of Atherosclerosis (MESA), begun in 2000, was the first large cohort study to incorporate cardiovascular magnetic resonance (CMR) to study the mechanisms of cardiovascular disease in over 5,000 initially asymptomatic participants, and there is now a wealth of follow-up data ov...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8813768/ https://www.ncbi.nlm.nih.gov/pubmed/35127868 http://dx.doi.org/10.3389/fcvm.2021.807728 |
_version_ | 1784644934069911552 |
---|---|
author | Suinesiaputra, Avan Mauger, Charlène A. Ambale-Venkatesh, Bharath Bluemke, David A. Dam Gade, Josefine Gilbert, Kathleen Janse, Markus H. A. Hald, Line Sofie Werkhoven, Conrad Wu, Colin O. Lima, Joao A. C. Young, Alistair A. |
author_facet | Suinesiaputra, Avan Mauger, Charlène A. Ambale-Venkatesh, Bharath Bluemke, David A. Dam Gade, Josefine Gilbert, Kathleen Janse, Markus H. A. Hald, Line Sofie Werkhoven, Conrad Wu, Colin O. Lima, Joao A. C. Young, Alistair A. |
author_sort | Suinesiaputra, Avan |
collection | PubMed |
description | The Multi-Ethnic Study of Atherosclerosis (MESA), begun in 2000, was the first large cohort study to incorporate cardiovascular magnetic resonance (CMR) to study the mechanisms of cardiovascular disease in over 5,000 initially asymptomatic participants, and there is now a wealth of follow-up data over 20 years. However, the imaging technology used to generate the CMR images is no longer in routine use, and methods trained on modern data fail when applied to such legacy datasets. This study aimed to develop a fully automated CMR analysis pipeline that leverages the ability of machine learning algorithms to enable extraction of additional information from such a large-scale legacy dataset, expanding on the original manual analyses. We combined the original study analyses with new annotations to develop a set of automated methods for customizing 3D left ventricular (LV) shape models to each CMR exam and build a statistical shape atlas. We trained VGGNet convolutional neural networks using a transfer learning sequence between two-chamber, four-chamber, and short-axis MRI views to detect landmarks. A U-Net architecture was used to detect the endocardial and epicardial boundaries in short-axis images. The landmark detection network accurately predicted mitral valve and right ventricular insertion points with average error distance <2.5 mm. The agreement of the network with two observers was excellent (intraclass correlation coefficient >0.9). The segmentation network produced average Dice score of 0.9 for both myocardium and LV cavity. Differences between the manual and automated analyses were small, i.e., <1.0 ± 2.6 mL/m(2) for indexed LV volume, 3.0 ± 6.4 g/m(2) for indexed LV mass, and 0.6 ± 3.3% for ejection fraction. In an independent atlas validation dataset, the LV atlas built from the fully automated pipeline showed similar statistical relationships to an atlas built from the manual analysis. Hence, the proposed pipeline is not only a promising framework to automatically assess additional measures of ventricular function, but also to study relationships between cardiac morphologies and future cardiac events, in a large-scale population study. |
format | Online Article Text |
id | pubmed-8813768 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-88137682022-02-05 Deep Learning Analysis of Cardiac MRI in Legacy Datasets: Multi-Ethnic Study of Atherosclerosis Suinesiaputra, Avan Mauger, Charlène A. Ambale-Venkatesh, Bharath Bluemke, David A. Dam Gade, Josefine Gilbert, Kathleen Janse, Markus H. A. Hald, Line Sofie Werkhoven, Conrad Wu, Colin O. Lima, Joao A. C. Young, Alistair A. Front Cardiovasc Med Cardiovascular Medicine The Multi-Ethnic Study of Atherosclerosis (MESA), begun in 2000, was the first large cohort study to incorporate cardiovascular magnetic resonance (CMR) to study the mechanisms of cardiovascular disease in over 5,000 initially asymptomatic participants, and there is now a wealth of follow-up data over 20 years. However, the imaging technology used to generate the CMR images is no longer in routine use, and methods trained on modern data fail when applied to such legacy datasets. This study aimed to develop a fully automated CMR analysis pipeline that leverages the ability of machine learning algorithms to enable extraction of additional information from such a large-scale legacy dataset, expanding on the original manual analyses. We combined the original study analyses with new annotations to develop a set of automated methods for customizing 3D left ventricular (LV) shape models to each CMR exam and build a statistical shape atlas. We trained VGGNet convolutional neural networks using a transfer learning sequence between two-chamber, four-chamber, and short-axis MRI views to detect landmarks. A U-Net architecture was used to detect the endocardial and epicardial boundaries in short-axis images. The landmark detection network accurately predicted mitral valve and right ventricular insertion points with average error distance <2.5 mm. The agreement of the network with two observers was excellent (intraclass correlation coefficient >0.9). The segmentation network produced average Dice score of 0.9 for both myocardium and LV cavity. Differences between the manual and automated analyses were small, i.e., <1.0 ± 2.6 mL/m(2) for indexed LV volume, 3.0 ± 6.4 g/m(2) for indexed LV mass, and 0.6 ± 3.3% for ejection fraction. In an independent atlas validation dataset, the LV atlas built from the fully automated pipeline showed similar statistical relationships to an atlas built from the manual analysis. Hence, the proposed pipeline is not only a promising framework to automatically assess additional measures of ventricular function, but also to study relationships between cardiac morphologies and future cardiac events, in a large-scale population study. Frontiers Media S.A. 2022-01-21 /pmc/articles/PMC8813768/ /pubmed/35127868 http://dx.doi.org/10.3389/fcvm.2021.807728 Text en Copyright © 2022 Suinesiaputra, Mauger, Ambale-Venkatesh, Bluemke, Dam Gade, Gilbert, Janse, Hald, Werkhoven, Wu, Lima and Young. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Cardiovascular Medicine Suinesiaputra, Avan Mauger, Charlène A. Ambale-Venkatesh, Bharath Bluemke, David A. Dam Gade, Josefine Gilbert, Kathleen Janse, Markus H. A. Hald, Line Sofie Werkhoven, Conrad Wu, Colin O. Lima, Joao A. C. Young, Alistair A. Deep Learning Analysis of Cardiac MRI in Legacy Datasets: Multi-Ethnic Study of Atherosclerosis |
title | Deep Learning Analysis of Cardiac MRI in Legacy Datasets: Multi-Ethnic Study of Atherosclerosis |
title_full | Deep Learning Analysis of Cardiac MRI in Legacy Datasets: Multi-Ethnic Study of Atherosclerosis |
title_fullStr | Deep Learning Analysis of Cardiac MRI in Legacy Datasets: Multi-Ethnic Study of Atherosclerosis |
title_full_unstemmed | Deep Learning Analysis of Cardiac MRI in Legacy Datasets: Multi-Ethnic Study of Atherosclerosis |
title_short | Deep Learning Analysis of Cardiac MRI in Legacy Datasets: Multi-Ethnic Study of Atherosclerosis |
title_sort | deep learning analysis of cardiac mri in legacy datasets: multi-ethnic study of atherosclerosis |
topic | Cardiovascular Medicine |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8813768/ https://www.ncbi.nlm.nih.gov/pubmed/35127868 http://dx.doi.org/10.3389/fcvm.2021.807728 |
work_keys_str_mv | AT suinesiaputraavan deeplearninganalysisofcardiacmriinlegacydatasetsmultiethnicstudyofatherosclerosis AT maugercharlenea deeplearninganalysisofcardiacmriinlegacydatasetsmultiethnicstudyofatherosclerosis AT ambalevenkateshbharath deeplearninganalysisofcardiacmriinlegacydatasetsmultiethnicstudyofatherosclerosis AT bluemkedavida deeplearninganalysisofcardiacmriinlegacydatasetsmultiethnicstudyofatherosclerosis AT damgadejosefine deeplearninganalysisofcardiacmriinlegacydatasetsmultiethnicstudyofatherosclerosis AT gilbertkathleen deeplearninganalysisofcardiacmriinlegacydatasetsmultiethnicstudyofatherosclerosis AT jansemarkusha deeplearninganalysisofcardiacmriinlegacydatasetsmultiethnicstudyofatherosclerosis AT haldlinesofie deeplearninganalysisofcardiacmriinlegacydatasetsmultiethnicstudyofatherosclerosis AT werkhovenconrad deeplearninganalysisofcardiacmriinlegacydatasetsmultiethnicstudyofatherosclerosis AT wucolino deeplearninganalysisofcardiacmriinlegacydatasetsmultiethnicstudyofatherosclerosis AT limajoaoac deeplearninganalysisofcardiacmriinlegacydatasetsmultiethnicstudyofatherosclerosis AT youngalistaira deeplearninganalysisofcardiacmriinlegacydatasetsmultiethnicstudyofatherosclerosis |