Cargando…
Representing individual electronic states for machine learning GW band structures of 2D materials
Choosing optimal representation methods of atomic and electronic structures is essential when machine learning properties of materials. We address the problem of representing quantum states of electrons in a solid for the purpose of machine leaning state-specific electronic properties. Specifically,...
Autores principales: | Knøsgaard, Nikolaj Rørbæk, Thygesen, Kristian Sommer |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8813923/ https://www.ncbi.nlm.nih.gov/pubmed/35115510 http://dx.doi.org/10.1038/s41467-022-28122-0 |
Ejemplares similares
-
Towards quantitative accuracy in first-principles transport calculations: The GW method applied to alkane/gold junctions
por: Strange, Mikkel, et al.
Publicado: (2011) -
Accurate Computational
Prediction of Core-Electron
Binding Energies in Carbon-Based Materials: A Machine-Learning Model
Combining Density-Functional Theory and GW
por: Golze, Dorothea, et al.
Publicado: (2022) -
Quasiparticle self-consistent GW study of cuprates: electronic structure, model parameters, and the two-band theory for T(c)
por: Jang, Seung Woo, et al.
Publicado: (2015) -
UHF-GW solid state detector proposal
por: Garcia-Bellido Capdevila, Juan
Publicado: (2021) -
GW Stewart
por: Kilmer, Misha E, et al.
Publicado: (2010)