Cargando…
Spatiotemporal sentiment variation analysis of geotagged COVID-19 tweets from India using a hybrid deep learning model
India is a hotspot of the COVID-19 crisis. During the first wave, several lockdowns (L) and gradual unlock (UL) phases were implemented by the government of India (GOI) to curb the virus spread. These phases witnessed many challenges and various day-to-day developments such as virus spread and resou...
Autor principal: | Kumar, Vaibhav |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8814057/ https://www.ncbi.nlm.nih.gov/pubmed/35115652 http://dx.doi.org/10.1038/s41598-022-05974-6 |
Ejemplares similares
-
Sentimental Analysis of COVID-19 Tweets Using Deep Learning Models
por: Chintalapudi, Nalini, et al.
Publicado: (2021) -
Multiclass sentiment analysis on COVID-19-related tweets using deep learning models
por: Vernikou, Sotiria, et al.
Publicado: (2022) -
A performance comparison of supervised machine learning models for Covid-19 tweets sentiment analysis
por: Rustam, Furqan, et al.
Publicado: (2021) -
A novel fusion-based deep learning model for sentiment analysis of COVID-19 tweets
por: Basiri, Mohammad Ehsan, et al.
Publicado: (2021) -
Impact of COVID-19 on online grocery shopping discussion and behavior reflected from Google Trends and geotagged tweets
por: Wu, Nemin, et al.
Publicado: (2023)