Cargando…
Novel ensemble intelligence methodologies for rockburst assessment in complex and variable environments
Rockburst is a severe geological hazard that restricts deep mine operations and tunnel constructions. To overcome the shortcomings of widely used algorithms in rockburst prediction, this study investigates the ensemble trees, i.e., random forest (RF), extremely randomized tree (ET), adaptive boostin...
Autores principales: | Li, Diyuan, Liu, Zida, Armaghani, Danial Jahed, Xiao, Peng, Zhou, Jian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8814189/ https://www.ncbi.nlm.nih.gov/pubmed/35115585 http://dx.doi.org/10.1038/s41598-022-05594-0 |
Ejemplares similares
-
Ensemble stacking rockburst prediction model based on Yeo–Johnson, K-means SMOTE, and optimal rockburst feature dimension determination
por: Sun, Lijun, et al.
Publicado: (2022) -
Prediction of ground vibration due to mine blasting in a surface lead–zinc mine using machine learning ensemble techniques
por: Hosseini, Shahab, et al.
Publicado: (2023) -
The risk assessment of rockburst intensity in the highway tunnel based on the variable fuzzy sets theory
por: Wang, Ai-Feng, et al.
Publicado: (2023) -
A combination of fuzzy Delphi method and hybrid ANN-based systems to forecast ground vibration resulting from blasting
por: Huang, Jiandong, et al.
Publicado: (2020) -
The Efficiency of Hybrid Intelligent Models in Predicting Fiber-Reinforced Polymer Concrete Interfacial-Bond Strength
por: Barkhordari, Mohammad Sadegh, et al.
Publicado: (2022)