Cargando…
Semantic segmentation of COVID-19 lesions with a multiscale dilated convolutional network
Automatic segmentation of infected lesions from computed tomography (CT) of COVID-19 patients is crucial for accurate diagnosis and follow-up assessment. The remaining challenges are the obvious scale difference between different types of COVID-19 lesions and the similarity between the lesions and n...
Autores principales: | Zhang, Jianxiong, Ding, Xuefeng, Hu, Dasha, Jiang, Yuming |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8814191/ https://www.ncbi.nlm.nih.gov/pubmed/35115573 http://dx.doi.org/10.1038/s41598-022-05527-x |
Ejemplares similares
-
Faster SCDNet: Real-Time Semantic Segmentation Network with Split Connection and Flexible Dilated Convolution †
por: Tian, Shu, et al.
Publicado: (2023) -
DMDF-Net: Dual multiscale dilated fusion network for accurate segmentation of lesions related to COVID-19 in lung radiographic scans
por: Owais, Muhammad, et al.
Publicado: (2022) -
Distributed Supervision Model for Enterprise Data Asset Trading Based on Blockchain Multi-Channel in Industry Alliance
por: Zhang, Jianxiong, et al.
Publicado: (2022) -
ThelR547v1—An Asymmetric Dilated Convolutional Neural Network for Real-time Semantic Segmentation of Horticultural Crops
por: Islam, Md Parvez, et al.
Publicado: (2022) -
Dynamic deformable attention network (DDANet) for COVID-19 lesions semantic segmentation
por: Rajamani, Kumar T., et al.
Publicado: (2021)