Cargando…

A Vasopressin-Induced Change in Prostaglandin Receptor Subtype Expression Explains the Differential Effect of PGE(2) on AQP2 Expression

Arginine vasopressin (AVP) stimulates the concentration of renal urine by increasing the principal cell expression of aquaporin-2 (AQP2) water channels. Prostaglandin E(2) (PGE(2)) and prostaglandin(2α) (PGF(2α)) increase the water absorption of the principal cell without AVP, but PGE(2) decreases i...

Descripción completa

Detalles Bibliográficos
Autores principales: Deen, Peter M. T., Boone, Michelle, Schweer, Horst, Olesen, Emma T. B., Carmone, Claudia, Wetzels, Jack F. M., Fenton, Robert A., Kortenoeven, Marleen L. A.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8814457/
https://www.ncbi.nlm.nih.gov/pubmed/35126177
http://dx.doi.org/10.3389/fphys.2021.787598
_version_ 1784645062803587072
author Deen, Peter M. T.
Boone, Michelle
Schweer, Horst
Olesen, Emma T. B.
Carmone, Claudia
Wetzels, Jack F. M.
Fenton, Robert A.
Kortenoeven, Marleen L. A.
author_facet Deen, Peter M. T.
Boone, Michelle
Schweer, Horst
Olesen, Emma T. B.
Carmone, Claudia
Wetzels, Jack F. M.
Fenton, Robert A.
Kortenoeven, Marleen L. A.
author_sort Deen, Peter M. T.
collection PubMed
description Arginine vasopressin (AVP) stimulates the concentration of renal urine by increasing the principal cell expression of aquaporin-2 (AQP2) water channels. Prostaglandin E(2) (PGE(2)) and prostaglandin(2α) (PGF(2α)) increase the water absorption of the principal cell without AVP, but PGE(2) decreases it in the presence of AVP. The underlying mechanism of this paradoxical response was investigated here. Mouse cortical collecting duct (mkpCCD(c14)) cells mimic principal cells as they endogenously express AQP2 in response to AVP. PGE(2) increased AQP2 abundance without desmopressin (dDAVP), while in the presence of dDAVP, PGE(2), and PGF(2α) reduced AQP2 abundance. dDAVP increased the cellular PGD(2) and PGE(2) release and decreased the PGF(2α) release. MpkCCD cells expressed mRNAs for the receptors of PGE(2) (EP1/EP4), PGF(2) (FP), and TxB(2) (TP). Incubation with dDAVP increased the expression of EP1 and FP but decreased the expression of EP4. In the absence of dDAVP, incubation of mpkCCD cells with an EP4, but not EP1/3, agonist increased AQP2 abundance, and the PGE(2)-induced increase in AQP2 was blocked with an EP4 antagonist. Moreover, in the presence of dDAVP, an EP1/3, but not EP4, agonist decreased the AQP2 abundance, and the addition of EP1 antagonists prevented the PGE(2)-mediated downregulation of AQP2. Our study shows that in mpkCCD(c14) cells, reduced EP4 receptor and increased EP1/FP receptor expression by dDAVP explains the differential effects of PGE(2) and PGF(2α) on AQP2 abundance with or without dDAVP. As the V2R and EP4 receptor, but not the EP1 and FP receptor, can couple to Gs and stimulate the cyclic adenosine monophosphate (cAMP) pathway, our data support a view that cells can desensitize themselves for receptors activating the same pathway and sensitize themselves for receptors of alternative pathways.
format Online
Article
Text
id pubmed-8814457
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-88144572022-02-05 A Vasopressin-Induced Change in Prostaglandin Receptor Subtype Expression Explains the Differential Effect of PGE(2) on AQP2 Expression Deen, Peter M. T. Boone, Michelle Schweer, Horst Olesen, Emma T. B. Carmone, Claudia Wetzels, Jack F. M. Fenton, Robert A. Kortenoeven, Marleen L. A. Front Physiol Physiology Arginine vasopressin (AVP) stimulates the concentration of renal urine by increasing the principal cell expression of aquaporin-2 (AQP2) water channels. Prostaglandin E(2) (PGE(2)) and prostaglandin(2α) (PGF(2α)) increase the water absorption of the principal cell without AVP, but PGE(2) decreases it in the presence of AVP. The underlying mechanism of this paradoxical response was investigated here. Mouse cortical collecting duct (mkpCCD(c14)) cells mimic principal cells as they endogenously express AQP2 in response to AVP. PGE(2) increased AQP2 abundance without desmopressin (dDAVP), while in the presence of dDAVP, PGE(2), and PGF(2α) reduced AQP2 abundance. dDAVP increased the cellular PGD(2) and PGE(2) release and decreased the PGF(2α) release. MpkCCD cells expressed mRNAs for the receptors of PGE(2) (EP1/EP4), PGF(2) (FP), and TxB(2) (TP). Incubation with dDAVP increased the expression of EP1 and FP but decreased the expression of EP4. In the absence of dDAVP, incubation of mpkCCD cells with an EP4, but not EP1/3, agonist increased AQP2 abundance, and the PGE(2)-induced increase in AQP2 was blocked with an EP4 antagonist. Moreover, in the presence of dDAVP, an EP1/3, but not EP4, agonist decreased the AQP2 abundance, and the addition of EP1 antagonists prevented the PGE(2)-mediated downregulation of AQP2. Our study shows that in mpkCCD(c14) cells, reduced EP4 receptor and increased EP1/FP receptor expression by dDAVP explains the differential effects of PGE(2) and PGF(2α) on AQP2 abundance with or without dDAVP. As the V2R and EP4 receptor, but not the EP1 and FP receptor, can couple to Gs and stimulate the cyclic adenosine monophosphate (cAMP) pathway, our data support a view that cells can desensitize themselves for receptors activating the same pathway and sensitize themselves for receptors of alternative pathways. Frontiers Media S.A. 2022-01-21 /pmc/articles/PMC8814457/ /pubmed/35126177 http://dx.doi.org/10.3389/fphys.2021.787598 Text en Copyright © 2022 Deen, Boone, Schweer, Olesen, Carmone, Wetzels, Fenton and Kortenoeven. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Physiology
Deen, Peter M. T.
Boone, Michelle
Schweer, Horst
Olesen, Emma T. B.
Carmone, Claudia
Wetzels, Jack F. M.
Fenton, Robert A.
Kortenoeven, Marleen L. A.
A Vasopressin-Induced Change in Prostaglandin Receptor Subtype Expression Explains the Differential Effect of PGE(2) on AQP2 Expression
title A Vasopressin-Induced Change in Prostaglandin Receptor Subtype Expression Explains the Differential Effect of PGE(2) on AQP2 Expression
title_full A Vasopressin-Induced Change in Prostaglandin Receptor Subtype Expression Explains the Differential Effect of PGE(2) on AQP2 Expression
title_fullStr A Vasopressin-Induced Change in Prostaglandin Receptor Subtype Expression Explains the Differential Effect of PGE(2) on AQP2 Expression
title_full_unstemmed A Vasopressin-Induced Change in Prostaglandin Receptor Subtype Expression Explains the Differential Effect of PGE(2) on AQP2 Expression
title_short A Vasopressin-Induced Change in Prostaglandin Receptor Subtype Expression Explains the Differential Effect of PGE(2) on AQP2 Expression
title_sort vasopressin-induced change in prostaglandin receptor subtype expression explains the differential effect of pge(2) on aqp2 expression
topic Physiology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8814457/
https://www.ncbi.nlm.nih.gov/pubmed/35126177
http://dx.doi.org/10.3389/fphys.2021.787598
work_keys_str_mv AT deenpetermt avasopressininducedchangeinprostaglandinreceptorsubtypeexpressionexplainsthedifferentialeffectofpge2onaqp2expression
AT boonemichelle avasopressininducedchangeinprostaglandinreceptorsubtypeexpressionexplainsthedifferentialeffectofpge2onaqp2expression
AT schweerhorst avasopressininducedchangeinprostaglandinreceptorsubtypeexpressionexplainsthedifferentialeffectofpge2onaqp2expression
AT olesenemmatb avasopressininducedchangeinprostaglandinreceptorsubtypeexpressionexplainsthedifferentialeffectofpge2onaqp2expression
AT carmoneclaudia avasopressininducedchangeinprostaglandinreceptorsubtypeexpressionexplainsthedifferentialeffectofpge2onaqp2expression
AT wetzelsjackfm avasopressininducedchangeinprostaglandinreceptorsubtypeexpressionexplainsthedifferentialeffectofpge2onaqp2expression
AT fentonroberta avasopressininducedchangeinprostaglandinreceptorsubtypeexpressionexplainsthedifferentialeffectofpge2onaqp2expression
AT kortenoevenmarleenla avasopressininducedchangeinprostaglandinreceptorsubtypeexpressionexplainsthedifferentialeffectofpge2onaqp2expression
AT deenpetermt vasopressininducedchangeinprostaglandinreceptorsubtypeexpressionexplainsthedifferentialeffectofpge2onaqp2expression
AT boonemichelle vasopressininducedchangeinprostaglandinreceptorsubtypeexpressionexplainsthedifferentialeffectofpge2onaqp2expression
AT schweerhorst vasopressininducedchangeinprostaglandinreceptorsubtypeexpressionexplainsthedifferentialeffectofpge2onaqp2expression
AT olesenemmatb vasopressininducedchangeinprostaglandinreceptorsubtypeexpressionexplainsthedifferentialeffectofpge2onaqp2expression
AT carmoneclaudia vasopressininducedchangeinprostaglandinreceptorsubtypeexpressionexplainsthedifferentialeffectofpge2onaqp2expression
AT wetzelsjackfm vasopressininducedchangeinprostaglandinreceptorsubtypeexpressionexplainsthedifferentialeffectofpge2onaqp2expression
AT fentonroberta vasopressininducedchangeinprostaglandinreceptorsubtypeexpressionexplainsthedifferentialeffectofpge2onaqp2expression
AT kortenoevenmarleenla vasopressininducedchangeinprostaglandinreceptorsubtypeexpressionexplainsthedifferentialeffectofpge2onaqp2expression