Cargando…
Autophagy in mesenchymal progenitors protects mice against bone marrow failure after severe intermittent stress
The cellular mechanisms required to ensure homeostasis of the hematopoietic niche and the ability of this niche to support hematopoiesis upon stress remain elusive. We here identify Wnt5a in Osterix(+) mesenchymal progenitor and stem cells (MSPCs) as a critical factor for niche-dependent hematopoies...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society of Hematology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8814682/ https://www.ncbi.nlm.nih.gov/pubmed/34657154 http://dx.doi.org/10.1182/blood.2021011775 |
_version_ | 1784645117184835584 |
---|---|
author | Landspersky, Theresa Saçma, Mehmet Rivière, Jennifer Hecker, Judith S. Hettler, Franziska Hameister, Erik Brandstetter, Katharina Istvánffy, Rouzanna Romero Marquez, Sandra Ludwig, Romina Götz, Marilena Buck, Michèle Wolf, Martin Schiemann, Matthias Ruland, Jürgen Strunk, Dirk Shimamura, Akiko Myers, Kasiani Yamaguchi, Terry P. Kieslinger, Matthias Leonhardt, Heinrich Bassermann, Florian Götze, Katharina S. Geiger, Hartmut Schreck, Christina Oostendorp, Robert A. J. |
author_facet | Landspersky, Theresa Saçma, Mehmet Rivière, Jennifer Hecker, Judith S. Hettler, Franziska Hameister, Erik Brandstetter, Katharina Istvánffy, Rouzanna Romero Marquez, Sandra Ludwig, Romina Götz, Marilena Buck, Michèle Wolf, Martin Schiemann, Matthias Ruland, Jürgen Strunk, Dirk Shimamura, Akiko Myers, Kasiani Yamaguchi, Terry P. Kieslinger, Matthias Leonhardt, Heinrich Bassermann, Florian Götze, Katharina S. Geiger, Hartmut Schreck, Christina Oostendorp, Robert A. J. |
author_sort | Landspersky, Theresa |
collection | PubMed |
description | The cellular mechanisms required to ensure homeostasis of the hematopoietic niche and the ability of this niche to support hematopoiesis upon stress remain elusive. We here identify Wnt5a in Osterix(+) mesenchymal progenitor and stem cells (MSPCs) as a critical factor for niche-dependent hematopoiesis. Mice lacking Wnt5a in MSPCs suffer from stress-related bone marrow (BM) failure and increased mortality. Niche cells devoid of Wnt5a show defective actin stress fiber orientation due to an elevated activity of the small GTPase CDC42. This results in incorrect positioning of autophagosomes and lysosomes, thus reducing autophagy and increasing oxidative stress. In MSPCs from patients from BM failure states which share features of peripheral cytopenia and hypocellular BM, we find similar defects in actin stress fiber orientation, reduced and incorrect colocalization of autophagosomes and lysosomes, and CDC42 activation. Strikingly, a short pharmacological intervention to attenuate elevated CDC42 activation in vivo in mice prevents defective actin-anchored autophagy in MSPCs, salvages hematopoiesis and protects against lethal cytopenia upon stress. In summary, our study identifies Wnt5a as a restriction factor for niche homeostasis by affecting CDC42-regulated actin stress-fiber orientation and autophagy upon stress. Our data further imply a critical role for autophagy in MSPCs for adequate support of hematopoiesis by the niche upon stress and in human diseases characterized by peripheral cytopenias and hypocellular BM. |
format | Online Article Text |
id | pubmed-8814682 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | American Society of Hematology |
record_format | MEDLINE/PubMed |
spelling | pubmed-88146822022-02-14 Autophagy in mesenchymal progenitors protects mice against bone marrow failure after severe intermittent stress Landspersky, Theresa Saçma, Mehmet Rivière, Jennifer Hecker, Judith S. Hettler, Franziska Hameister, Erik Brandstetter, Katharina Istvánffy, Rouzanna Romero Marquez, Sandra Ludwig, Romina Götz, Marilena Buck, Michèle Wolf, Martin Schiemann, Matthias Ruland, Jürgen Strunk, Dirk Shimamura, Akiko Myers, Kasiani Yamaguchi, Terry P. Kieslinger, Matthias Leonhardt, Heinrich Bassermann, Florian Götze, Katharina S. Geiger, Hartmut Schreck, Christina Oostendorp, Robert A. J. Blood Hematopoiesis and Stem Cells The cellular mechanisms required to ensure homeostasis of the hematopoietic niche and the ability of this niche to support hematopoiesis upon stress remain elusive. We here identify Wnt5a in Osterix(+) mesenchymal progenitor and stem cells (MSPCs) as a critical factor for niche-dependent hematopoiesis. Mice lacking Wnt5a in MSPCs suffer from stress-related bone marrow (BM) failure and increased mortality. Niche cells devoid of Wnt5a show defective actin stress fiber orientation due to an elevated activity of the small GTPase CDC42. This results in incorrect positioning of autophagosomes and lysosomes, thus reducing autophagy and increasing oxidative stress. In MSPCs from patients from BM failure states which share features of peripheral cytopenia and hypocellular BM, we find similar defects in actin stress fiber orientation, reduced and incorrect colocalization of autophagosomes and lysosomes, and CDC42 activation. Strikingly, a short pharmacological intervention to attenuate elevated CDC42 activation in vivo in mice prevents defective actin-anchored autophagy in MSPCs, salvages hematopoiesis and protects against lethal cytopenia upon stress. In summary, our study identifies Wnt5a as a restriction factor for niche homeostasis by affecting CDC42-regulated actin stress-fiber orientation and autophagy upon stress. Our data further imply a critical role for autophagy in MSPCs for adequate support of hematopoiesis by the niche upon stress and in human diseases characterized by peripheral cytopenias and hypocellular BM. American Society of Hematology 2022-02-03 /pmc/articles/PMC8814682/ /pubmed/34657154 http://dx.doi.org/10.1182/blood.2021011775 Text en © 2022 by The American Society of Hematology This article is made available via the PMC Open Access Subset for unrestricted reuse and analyses in any form or by any means with acknowledgment of the original source. These permissions are granted for the duration of the World Health Organization (WHO) declaration of COVID-19 as a global pandemic or until permissions are revoked in writing. Upon expiration of these permissions, PMC is granted a perpetual license to make this article available via PMC and Europe PMC, consistent with existing copyright protections. |
spellingShingle | Hematopoiesis and Stem Cells Landspersky, Theresa Saçma, Mehmet Rivière, Jennifer Hecker, Judith S. Hettler, Franziska Hameister, Erik Brandstetter, Katharina Istvánffy, Rouzanna Romero Marquez, Sandra Ludwig, Romina Götz, Marilena Buck, Michèle Wolf, Martin Schiemann, Matthias Ruland, Jürgen Strunk, Dirk Shimamura, Akiko Myers, Kasiani Yamaguchi, Terry P. Kieslinger, Matthias Leonhardt, Heinrich Bassermann, Florian Götze, Katharina S. Geiger, Hartmut Schreck, Christina Oostendorp, Robert A. J. Autophagy in mesenchymal progenitors protects mice against bone marrow failure after severe intermittent stress |
title | Autophagy in mesenchymal progenitors protects mice against bone marrow failure after severe intermittent stress |
title_full | Autophagy in mesenchymal progenitors protects mice against bone marrow failure after severe intermittent stress |
title_fullStr | Autophagy in mesenchymal progenitors protects mice against bone marrow failure after severe intermittent stress |
title_full_unstemmed | Autophagy in mesenchymal progenitors protects mice against bone marrow failure after severe intermittent stress |
title_short | Autophagy in mesenchymal progenitors protects mice against bone marrow failure after severe intermittent stress |
title_sort | autophagy in mesenchymal progenitors protects mice against bone marrow failure after severe intermittent stress |
topic | Hematopoiesis and Stem Cells |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8814682/ https://www.ncbi.nlm.nih.gov/pubmed/34657154 http://dx.doi.org/10.1182/blood.2021011775 |
work_keys_str_mv | AT landsperskytheresa autophagyinmesenchymalprogenitorsprotectsmiceagainstbonemarrowfailureaftersevereintermittentstress AT sacmamehmet autophagyinmesenchymalprogenitorsprotectsmiceagainstbonemarrowfailureaftersevereintermittentstress AT rivierejennifer autophagyinmesenchymalprogenitorsprotectsmiceagainstbonemarrowfailureaftersevereintermittentstress AT heckerjudiths autophagyinmesenchymalprogenitorsprotectsmiceagainstbonemarrowfailureaftersevereintermittentstress AT hettlerfranziska autophagyinmesenchymalprogenitorsprotectsmiceagainstbonemarrowfailureaftersevereintermittentstress AT hameistererik autophagyinmesenchymalprogenitorsprotectsmiceagainstbonemarrowfailureaftersevereintermittentstress AT brandstetterkatharina autophagyinmesenchymalprogenitorsprotectsmiceagainstbonemarrowfailureaftersevereintermittentstress AT istvanffyrouzanna autophagyinmesenchymalprogenitorsprotectsmiceagainstbonemarrowfailureaftersevereintermittentstress AT romeromarquezsandra autophagyinmesenchymalprogenitorsprotectsmiceagainstbonemarrowfailureaftersevereintermittentstress AT ludwigromina autophagyinmesenchymalprogenitorsprotectsmiceagainstbonemarrowfailureaftersevereintermittentstress AT gotzmarilena autophagyinmesenchymalprogenitorsprotectsmiceagainstbonemarrowfailureaftersevereintermittentstress AT buckmichele autophagyinmesenchymalprogenitorsprotectsmiceagainstbonemarrowfailureaftersevereintermittentstress AT wolfmartin autophagyinmesenchymalprogenitorsprotectsmiceagainstbonemarrowfailureaftersevereintermittentstress AT schiemannmatthias autophagyinmesenchymalprogenitorsprotectsmiceagainstbonemarrowfailureaftersevereintermittentstress AT rulandjurgen autophagyinmesenchymalprogenitorsprotectsmiceagainstbonemarrowfailureaftersevereintermittentstress AT strunkdirk autophagyinmesenchymalprogenitorsprotectsmiceagainstbonemarrowfailureaftersevereintermittentstress AT shimamuraakiko autophagyinmesenchymalprogenitorsprotectsmiceagainstbonemarrowfailureaftersevereintermittentstress AT myerskasiani autophagyinmesenchymalprogenitorsprotectsmiceagainstbonemarrowfailureaftersevereintermittentstress AT yamaguchiterryp autophagyinmesenchymalprogenitorsprotectsmiceagainstbonemarrowfailureaftersevereintermittentstress AT kieslingermatthias autophagyinmesenchymalprogenitorsprotectsmiceagainstbonemarrowfailureaftersevereintermittentstress AT leonhardtheinrich autophagyinmesenchymalprogenitorsprotectsmiceagainstbonemarrowfailureaftersevereintermittentstress AT bassermannflorian autophagyinmesenchymalprogenitorsprotectsmiceagainstbonemarrowfailureaftersevereintermittentstress AT gotzekatharinas autophagyinmesenchymalprogenitorsprotectsmiceagainstbonemarrowfailureaftersevereintermittentstress AT geigerhartmut autophagyinmesenchymalprogenitorsprotectsmiceagainstbonemarrowfailureaftersevereintermittentstress AT schreckchristina autophagyinmesenchymalprogenitorsprotectsmiceagainstbonemarrowfailureaftersevereintermittentstress AT oostendorprobertaj autophagyinmesenchymalprogenitorsprotectsmiceagainstbonemarrowfailureaftersevereintermittentstress |