Cargando…

Global conserved RBD fraction of SARS-CoV-2 S-protein with T500S mutation in silico significantly blocks ACE2 and rejects viral spike

BACKGROUND: SARS-CoV-2 developed global-pandemic with millions of infections/deaths. As it is urgently necessary it is assumed that some blockers/inhibitors of ACE2 could be helpful to resist the binding of viral-spike Receptor-Binding-Domain (RBD). METHODS: Here, conserved RBD from 186-countries we...

Descripción completa

Detalles Bibliográficos
Autores principales: Banerjee, Amrita, Kanwar, Mehak, Santra, Dipannita, Maiti, Smarajit
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8814807/
https://www.ncbi.nlm.nih.gov/pubmed/35136839
http://dx.doi.org/10.1186/s41231-022-00109-5
Descripción
Sumario:BACKGROUND: SARS-CoV-2 developed global-pandemic with millions of infections/deaths. As it is urgently necessary it is assumed that some blockers/inhibitors of ACE2 could be helpful to resist the binding of viral-spike Receptor-Binding-Domain (RBD). METHODS: Here, conserved RBD from 186-countries were compared with WUHAN-Hu-1 wild-type (CLUSTAL-X2/Pymol). The RBD of ACE2-bound nCOV2 crystal-structure 6VW1 was analyzed by Haddock-PatchDock. Extensive structural study/trial to introduce point/double/triple mutations in the different locations of CUT4 (most-effective from total 4 proposed fragments; CUTs) were tested with Swiss-Model-Expacy. RESULTS: Blind-docking of mutated-CUTs in ACE2 completely rejected the nCOV2 binding to ACE2. Further, competitive-docking/binding-analyses (by PRODIGY) demonstrated few more bonding (LYS31-PHE490 and GLN42-GLN498) of CUT4 (than wild) and hindered TYR41-THR500 interaction with ACE2. Moreover, mutated-CUT4 even showed higher blocking effect against spike-ACE2 binding. CONCLUSION: In summary, CUT4-mutant rejects whole glycosylated-nCoV2 in all pre-dock, post-dock and competitive-docking conditions. The present work strategy is relevant because it could be able to block at the first level entry of the virus to the host cells. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s41231-022-00109-5.