Cargando…
Corrigendum: Creeping Bentgrass Yield Prediction With Machine Learning Models
Autores principales: | Zhou, Qiyu, Soldat, Douglas J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8814848/ https://www.ncbi.nlm.nih.gov/pubmed/35126438 http://dx.doi.org/10.3389/fpls.2021.829508 |
Ejemplares similares
-
Creeping Bentgrass Yield Prediction With Machine Learning Models
por: Zhou, Qiyu, et al.
Publicado: (2021) -
Evaluating Decision Support Tools for Precision Nitrogen Management on Creeping Bentgrass Putting Greens
por: Zhou, Qiyu, et al.
Publicado: (2022) -
Metabolic Effects of Acibenzolar-S-Methyl for Improving Heat or Drought Stress in Creeping Bentgrass
por: Jespersen, David, et al.
Publicado: (2017) -
Spermine-mediated metabolic homeostasis improves growth and stress tolerance in creeping bentgrass (Agrostis stolonifera) under water or high-temperature stress
por: Li, Zhou, et al.
Publicado: (2022) -
Adaptability to High Temperature and Stay-Green Genotypes Associated With Variations in Antioxidant, Chlorophyll Metabolism, and γ-Aminobutyric Acid Accumulation in Creeping Bentgrass Species
por: Li, Zhou, et al.
Publicado: (2021)