Cargando…
Patient Representation Learning From Heterogeneous Data Sources and Knowledge Graphs Using Deep Collective Matrix Factorization: Evaluation Study
BACKGROUND: Patient representation learning aims to learn features, also called representations, from input sources automatically, often in an unsupervised manner, for use in predictive models. This obviates the need for cumbersome, time- and resource-intensive manual feature engineering, especially...
Autores principales: | Kumar, Sajit, Nanelia, Alicia, Mariappan, Ragunathan, Rajagopal, Adithya, Rajan, Vaibhav |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8814927/ https://www.ncbi.nlm.nih.gov/pubmed/35049514 http://dx.doi.org/10.2196/28842 |
Ejemplares similares
-
Adverse Drug Event Prediction Using Noisy Literature-Derived Knowledge Graphs: Algorithm Development and Validation
por: Dasgupta, Soham, et al.
Publicado: (2021) -
Text-Graph Enhanced Knowledge Graph Representation Learning
por: Hu, Linmei, et al.
Publicado: (2021) -
Semantic Representation of Robot Manipulation with Knowledge Graph
por: Miao, Runqing, et al.
Publicado: (2023) -
Iterative heterogeneous graph learning for knowledge graph-based recommendation
por: Liu, Tieyuan, et al.
Publicado: (2023) -
Neuro-symbolic representation learning on biological knowledge graphs
por: Alshahrani, Mona, et al.
Publicado: (2017)