Cargando…

Charged Domain Wall and Polar Vortex Topologies in a Room-Temperature Magnetoelectric Multiferroic Thin Film

[Image: see text] Multiferroic topologies are an emerging solution for future low-power magnetic nanoelectronics due to their combined tuneable functionality and mobility. Here, we show that in addition to being magnetoelectric multiferroic at room temperature, thin-film Aurivillius phase Bi(6)Ti(x)...

Descripción completa

Detalles Bibliográficos
Autores principales: Moore, Kalani, O’Connell, Eoghan N., Griffin, Sinéad M., Downing, Clive, Colfer, Louise, Schmidt, Michael, Nicolosi, Valeria, Bangert, Ursel, Keeney, Lynette, Conroy, Michele
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8815039/
https://www.ncbi.nlm.nih.gov/pubmed/35044754
http://dx.doi.org/10.1021/acsami.1c17383
_version_ 1784645200454352896
author Moore, Kalani
O’Connell, Eoghan N.
Griffin, Sinéad M.
Downing, Clive
Colfer, Louise
Schmidt, Michael
Nicolosi, Valeria
Bangert, Ursel
Keeney, Lynette
Conroy, Michele
author_facet Moore, Kalani
O’Connell, Eoghan N.
Griffin, Sinéad M.
Downing, Clive
Colfer, Louise
Schmidt, Michael
Nicolosi, Valeria
Bangert, Ursel
Keeney, Lynette
Conroy, Michele
author_sort Moore, Kalani
collection PubMed
description [Image: see text] Multiferroic topologies are an emerging solution for future low-power magnetic nanoelectronics due to their combined tuneable functionality and mobility. Here, we show that in addition to being magnetoelectric multiferroic at room temperature, thin-film Aurivillius phase Bi(6)Ti(x)Fe(y)Mn(z)O(18) is an ideal material platform for both domain wall and vortex topology-based nanoelectronic devices. Utilizing atomic-resolution electron microscopy, we reveal the presence and structure of 180°-type charged head-to-head and tail-to-tail domain walls passing throughout the thin film. Theoretical calculations confirm the subunit cell cation site preference and charged domain wall energetics for Bi(6)Ti(x)Fe(y)Mn(z)O(18). Finally, we show that polar vortex-type topologies also form at out-of-phase boundaries of stacking faults when internal strain and electrostatic energy gradients are altered. This study could pave the way for controlled polar vortex topology formation via strain engineering in other multiferroic thin films. Moreover, these results confirm that the subunit cell topological features play an important role in controlling the charge and spin state of Aurivillius phase films and other multiferroic heterostructures.
format Online
Article
Text
id pubmed-8815039
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-88150392022-02-07 Charged Domain Wall and Polar Vortex Topologies in a Room-Temperature Magnetoelectric Multiferroic Thin Film Moore, Kalani O’Connell, Eoghan N. Griffin, Sinéad M. Downing, Clive Colfer, Louise Schmidt, Michael Nicolosi, Valeria Bangert, Ursel Keeney, Lynette Conroy, Michele ACS Appl Mater Interfaces [Image: see text] Multiferroic topologies are an emerging solution for future low-power magnetic nanoelectronics due to their combined tuneable functionality and mobility. Here, we show that in addition to being magnetoelectric multiferroic at room temperature, thin-film Aurivillius phase Bi(6)Ti(x)Fe(y)Mn(z)O(18) is an ideal material platform for both domain wall and vortex topology-based nanoelectronic devices. Utilizing atomic-resolution electron microscopy, we reveal the presence and structure of 180°-type charged head-to-head and tail-to-tail domain walls passing throughout the thin film. Theoretical calculations confirm the subunit cell cation site preference and charged domain wall energetics for Bi(6)Ti(x)Fe(y)Mn(z)O(18). Finally, we show that polar vortex-type topologies also form at out-of-phase boundaries of stacking faults when internal strain and electrostatic energy gradients are altered. This study could pave the way for controlled polar vortex topology formation via strain engineering in other multiferroic thin films. Moreover, these results confirm that the subunit cell topological features play an important role in controlling the charge and spin state of Aurivillius phase films and other multiferroic heterostructures. American Chemical Society 2022-01-19 2022-02-02 /pmc/articles/PMC8815039/ /pubmed/35044754 http://dx.doi.org/10.1021/acsami.1c17383 Text en © 2022 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by/4.0/Permits the broadest form of re-use including for commercial purposes, provided that author attribution and integrity are maintained (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Moore, Kalani
O’Connell, Eoghan N.
Griffin, Sinéad M.
Downing, Clive
Colfer, Louise
Schmidt, Michael
Nicolosi, Valeria
Bangert, Ursel
Keeney, Lynette
Conroy, Michele
Charged Domain Wall and Polar Vortex Topologies in a Room-Temperature Magnetoelectric Multiferroic Thin Film
title Charged Domain Wall and Polar Vortex Topologies in a Room-Temperature Magnetoelectric Multiferroic Thin Film
title_full Charged Domain Wall and Polar Vortex Topologies in a Room-Temperature Magnetoelectric Multiferroic Thin Film
title_fullStr Charged Domain Wall and Polar Vortex Topologies in a Room-Temperature Magnetoelectric Multiferroic Thin Film
title_full_unstemmed Charged Domain Wall and Polar Vortex Topologies in a Room-Temperature Magnetoelectric Multiferroic Thin Film
title_short Charged Domain Wall and Polar Vortex Topologies in a Room-Temperature Magnetoelectric Multiferroic Thin Film
title_sort charged domain wall and polar vortex topologies in a room-temperature magnetoelectric multiferroic thin film
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8815039/
https://www.ncbi.nlm.nih.gov/pubmed/35044754
http://dx.doi.org/10.1021/acsami.1c17383
work_keys_str_mv AT moorekalani chargeddomainwallandpolarvortextopologiesinaroomtemperaturemagnetoelectricmultiferroicthinfilm
AT oconnelleoghann chargeddomainwallandpolarvortextopologiesinaroomtemperaturemagnetoelectricmultiferroicthinfilm
AT griffinsineadm chargeddomainwallandpolarvortextopologiesinaroomtemperaturemagnetoelectricmultiferroicthinfilm
AT downingclive chargeddomainwallandpolarvortextopologiesinaroomtemperaturemagnetoelectricmultiferroicthinfilm
AT colferlouise chargeddomainwallandpolarvortextopologiesinaroomtemperaturemagnetoelectricmultiferroicthinfilm
AT schmidtmichael chargeddomainwallandpolarvortextopologiesinaroomtemperaturemagnetoelectricmultiferroicthinfilm
AT nicolosivaleria chargeddomainwallandpolarvortextopologiesinaroomtemperaturemagnetoelectricmultiferroicthinfilm
AT bangertursel chargeddomainwallandpolarvortextopologiesinaroomtemperaturemagnetoelectricmultiferroicthinfilm
AT keeneylynette chargeddomainwallandpolarvortextopologiesinaroomtemperaturemagnetoelectricmultiferroicthinfilm
AT conroymichele chargeddomainwallandpolarvortextopologiesinaroomtemperaturemagnetoelectricmultiferroicthinfilm