Cargando…
Characteristic changes of ozone and its precursors in London during COVID-19 lockdown and the ozone surge reason analysis
The London COVID-19 lockdown reduced emissions from anthropogenic sources, providing unique conditions for air contamination research. This research uses tropospheric ozone (O(3)), volatile organic compounds (VOCs) and NOx (NO+NO(2)) hourly monitoring data at the London Marylebone Road station from...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Ltd.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8815197/ https://www.ncbi.nlm.nih.gov/pubmed/35136378 http://dx.doi.org/10.1016/j.atmosenv.2022.118980 |
Sumario: | The London COVID-19 lockdown reduced emissions from anthropogenic sources, providing unique conditions for air contamination research. This research uses tropospheric ozone (O(3)), volatile organic compounds (VOCs) and NOx (NO+NO(2)) hourly monitoring data at the London Marylebone Road station from 2001 to 2020 to investigate the effects of lockdown on (O(3)) and its precursors. Both NOx and VOCs pollution showed a decreasing trend between 2001 and 2021, with a gradual increase in O(3) in contrast. During the COVID-19 lockdown period (from 23rd March to July 4, 2020), there was a surge in O(3) concentration, accompanied by a sharp reduction in NOx concentrations. Because all the monitoring VOCs/NOx results were less than eight during the lockdown, indicating that O(3) formation in urban London was in the VOC-limited regime. The rapid increase in O(3) concentrations caused by the lockdown was closely related to the rapid decrease in NOx emissions. |
---|