Cargando…
Two-dimensional and three-dimensional T2 weighted imaging-based radiomic signatures for the preoperative discrimination of ovarian borderline tumors and malignant tumors
BACKGROUND: Ovarian cancer is the most women malignancy in the whole world. It is difficult to differentiate ovarian cancers from ovarian borderline tumors because of some similar imaging findings.Radiomics study may help clinicians to make a proper diagnosis before invasive surgery. PURPOSE: To eva...
Autores principales: | Liu, Xuefen, Wang, Tianping, Zhang, Guofu, Hua, Keqin, Jiang, Hua, Duan, Shaofeng, Jin, Jun, Zhang, He |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8815217/ https://www.ncbi.nlm.nih.gov/pubmed/35115022 http://dx.doi.org/10.1186/s13048-022-00943-z |
Ejemplares similares
-
Deep learning for the ovarian lesion localization and discrimination between borderline and malignant ovarian tumors based on routine MR imaging
por: Wang, Yida, et al.
Publicado: (2023) -
MR-based radiomics-clinical nomogram in epithelial ovarian tumor prognosis prediction: tumor body texture analysis across various acquisition protocols
por: Wang, Tianping, et al.
Publicado: (2022) -
MDCT-Based Radiomics Features for the Differentiation of Serous Borderline Ovarian Tumors and Serous Malignant Ovarian Tumors
por: Yu, Xin-ping, et al.
Publicado: (2021) -
T2-weighted MRI-based radiomics for discriminating between benign and borderline epithelial ovarian tumors: a multicenter study
por: Wei, Mingxiang, et al.
Publicado: (2022) -
Texture Analysis of Three-Dimensional MRI Images May Differentiate Borderline and Malignant Epithelial Ovarian Tumors
por: Ye, Rongping, et al.
Publicado: (2021)