Cargando…
Removal of the Micropollutants Propranolol Hydrochloride and 2-Naphthol From Water by Pyridine-Functionalized Polymers
The number and concentration of micropollutants in aqueous environments are increasing. Two such micropollutants include the pharmaceutical, propranolol hydrochloride, and dye intermediate, 2-naphthol. Here, we describe the synthesis of both linear and crosslinked pyridine-functionalized copolymers...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8815703/ https://www.ncbi.nlm.nih.gov/pubmed/35127646 http://dx.doi.org/10.3389/fchem.2021.793870 |
_version_ | 1784645295754182656 |
---|---|
author | Zheng, Qixuan Unruh, Daniel K. Hutchins, Kristin M. |
author_facet | Zheng, Qixuan Unruh, Daniel K. Hutchins, Kristin M. |
author_sort | Zheng, Qixuan |
collection | PubMed |
description | The number and concentration of micropollutants in aqueous environments are increasing. Two such micropollutants include the pharmaceutical, propranolol hydrochloride, and dye intermediate, 2-naphthol. Here, we describe the synthesis of both linear and crosslinked pyridine-functionalized copolymers that bind and remove propranolol hydrochloride and 2-naphthol from water solutions. Propranolol hydrochloride and 2-naphthol both contain hydrogen-bond-donor groups, and the pyridine moiety on the polymer acts as a hydrogen-bond acceptor to facilitate removal. Copolymers with different amounts of pyridine comonomer are synthesized, and as the amount of the pyridine comonomer is increased, the ability of the polymer to bind and remove the contaminant also increases. The concentrations of propranolol hydrochloride and 2-naphthol decreased by approximately 20–40% and 60–88%, respectively, depending on the polymer type that is used in the binding experiment. A control polymer was synthesized by using styrene in place of the pyridine monomer. In analogous binding experiments, the styrene polymer decreases the concentration of propranolol hydrochloride by 2% and 2-naphthol by 26%. Thus, the binding effectiveness is significantly reduced when the hydrogen-bond-acceptor group is not present on the polymer. We also show that the best performing crosslinked pyridine-functionalized polymer is reusable. Overall, these polymer adsorbents demonstrate the potential for removal of micropollutants from water. |
format | Online Article Text |
id | pubmed-8815703 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-88157032022-02-05 Removal of the Micropollutants Propranolol Hydrochloride and 2-Naphthol From Water by Pyridine-Functionalized Polymers Zheng, Qixuan Unruh, Daniel K. Hutchins, Kristin M. Front Chem Chemistry The number and concentration of micropollutants in aqueous environments are increasing. Two such micropollutants include the pharmaceutical, propranolol hydrochloride, and dye intermediate, 2-naphthol. Here, we describe the synthesis of both linear and crosslinked pyridine-functionalized copolymers that bind and remove propranolol hydrochloride and 2-naphthol from water solutions. Propranolol hydrochloride and 2-naphthol both contain hydrogen-bond-donor groups, and the pyridine moiety on the polymer acts as a hydrogen-bond acceptor to facilitate removal. Copolymers with different amounts of pyridine comonomer are synthesized, and as the amount of the pyridine comonomer is increased, the ability of the polymer to bind and remove the contaminant also increases. The concentrations of propranolol hydrochloride and 2-naphthol decreased by approximately 20–40% and 60–88%, respectively, depending on the polymer type that is used in the binding experiment. A control polymer was synthesized by using styrene in place of the pyridine monomer. In analogous binding experiments, the styrene polymer decreases the concentration of propranolol hydrochloride by 2% and 2-naphthol by 26%. Thus, the binding effectiveness is significantly reduced when the hydrogen-bond-acceptor group is not present on the polymer. We also show that the best performing crosslinked pyridine-functionalized polymer is reusable. Overall, these polymer adsorbents demonstrate the potential for removal of micropollutants from water. Frontiers Media S.A. 2022-01-21 /pmc/articles/PMC8815703/ /pubmed/35127646 http://dx.doi.org/10.3389/fchem.2021.793870 Text en Copyright © 2022 Zheng, Unruh and Hutchins. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Chemistry Zheng, Qixuan Unruh, Daniel K. Hutchins, Kristin M. Removal of the Micropollutants Propranolol Hydrochloride and 2-Naphthol From Water by Pyridine-Functionalized Polymers |
title | Removal of the Micropollutants Propranolol Hydrochloride and 2-Naphthol From Water by Pyridine-Functionalized Polymers |
title_full | Removal of the Micropollutants Propranolol Hydrochloride and 2-Naphthol From Water by Pyridine-Functionalized Polymers |
title_fullStr | Removal of the Micropollutants Propranolol Hydrochloride and 2-Naphthol From Water by Pyridine-Functionalized Polymers |
title_full_unstemmed | Removal of the Micropollutants Propranolol Hydrochloride and 2-Naphthol From Water by Pyridine-Functionalized Polymers |
title_short | Removal of the Micropollutants Propranolol Hydrochloride and 2-Naphthol From Water by Pyridine-Functionalized Polymers |
title_sort | removal of the micropollutants propranolol hydrochloride and 2-naphthol from water by pyridine-functionalized polymers |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8815703/ https://www.ncbi.nlm.nih.gov/pubmed/35127646 http://dx.doi.org/10.3389/fchem.2021.793870 |
work_keys_str_mv | AT zhengqixuan removalofthemicropollutantspropranololhydrochlorideand2naphtholfromwaterbypyridinefunctionalizedpolymers AT unruhdanielk removalofthemicropollutantspropranololhydrochlorideand2naphtholfromwaterbypyridinefunctionalizedpolymers AT hutchinskristinm removalofthemicropollutantspropranololhydrochlorideand2naphtholfromwaterbypyridinefunctionalizedpolymers |