Cargando…
Cross-Adversarial Learning for Molecular Generation in Drug Design
Molecular generation is an important but challenging task in drug design, as it requires optimization of chemical compound structures as well as many complex properties. Most of the existing methods use deep learning models to generate molecular representations. However, these methods are faced with...
Autores principales: | Wu, Banghua, Li, Linjie, Cui, Yue, Zheng, Kai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8815768/ https://www.ncbi.nlm.nih.gov/pubmed/35126153 http://dx.doi.org/10.3389/fphar.2021.827606 |
Ejemplares similares
-
Molecular Generation for Desired Transcriptome Changes With Adversarial Autoencoders
por: Shayakhmetov, Rim, et al.
Publicado: (2020) -
Graph generative and adversarial strategy-enhanced node feature learning and self-calibrated pairwise attribute encoding for prediction of drug-related side effects
por: Xuan, Ping, et al.
Publicado: (2023) -
Addendum: Molecular Generation for Desired Transcriptome Changes With Adversarial Autoencoders
por: Shayakhmetov, Rim, et al.
Publicado: (2020) -
Designing optimized drug candidates with Generative Adversarial Network
por: Abbasi, Maryam, et al.
Publicado: (2022) -
Application of SMILES-based molecular generative model in new drug design
por: Kong, Weiya, et al.
Publicado: (2022)