Cargando…
Segmentation of HE-stained meningioma pathological images based on pseudo-labels
Biomedical research is inseparable from the analysis of various histopathological images, and hematoxylin-eosin (HE)-stained images are one of the most basic and widely used types. However, at present, machine learning based approaches of the analysis of this kind of images are highly relied on manu...
Autores principales: | Wu, Chongshu, Zhong, Jing, Lin, Lin, Chen, Yanping, Xue, Yunjing, Shi, Peng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8815980/ https://www.ncbi.nlm.nih.gov/pubmed/35120175 http://dx.doi.org/10.1371/journal.pone.0263006 |
Ejemplares similares
-
Nuclei segmentation of HE stained histopathological images based on feature global delivery connection network
por: Shi, Peng, et al.
Publicado: (2022) -
Divide-and-Attention Network for HE-Stained Pathological Image Classification
por: Yan, Rui, et al.
Publicado: (2022) -
Nuclei-Guided Network for Breast Cancer Grading in HE-Stained Pathological Images †
por: Yan, Rui, et al.
Publicado: (2022) -
PseudoSegRT: efficient pseudo-labelling for intraoperative OCT segmentation
por: Huang, Yu, et al.
Publicado: (2023) -
Histogram analysis of mono-exponential, bi-exponential and stretched-exponential diffusion-weighted MR imaging in predicting consistency of meningiomas
por: Zheng, Lingmin, et al.
Publicado: (2023)