Cargando…
Probabilistic spatial analysis in quantitative microscopy with uncertainty-aware cell detection using deep Bayesian regression
The investigation of biological systems with three-dimensional microscopy demands automatic cell identification methods that not only are accurate but also can imply the uncertainty in their predictions. The use of deep learning to regress density maps is a popular successful approach for extracting...
Autores principales: | Gomariz, Alvaro, Portenier, Tiziano, Nombela-Arrieta, César, Goksel, Orcun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8816343/ https://www.ncbi.nlm.nih.gov/pubmed/35119934 http://dx.doi.org/10.1126/sciadv.abi8295 |
Ejemplares similares
-
Modality Attention and Sampling Enables Deep Learning with Heterogeneous Marker Combinations in Fluorescence Microscopy
por: Gomariz, Alvaro, et al.
Publicado: (2021) -
Quantitative spatial analysis of haematopoiesis-regulating stromal cells in the bone marrow microenvironment by 3D microscopy
por: Gomariz, Alvaro, et al.
Publicado: (2018) -
Toward a taxonomy of trust for probabilistic machine learning
por: Broderick, Tamara, et al.
Publicado: (2023) -
Learning ultrasound rendering from cross-sectional model slices for simulated training
por: Zhang, Lin, et al.
Publicado: (2021) -
A global assessment of the impact of violence on lifetime uncertainty
por: Aburto, José Manuel, et al.
Publicado: (2023)